What is Adrenergic?

Introduction

Adrenergic means “working on adrenaline (epinephrine) or noradrenaline (norepinephrine)” (or on their receptors). When not further qualified, it is usually used in the sense of enhancing or mimicking the effects of epinephrine and norepinephrine in the body.

Outline

Adrenergic nervous system, a part of the autonomic nervous system that uses epinephrine or norepinephrine as its neurotransmitter

Regarding proteins:

  • Adrenergic receptor, a receptor type for epinephrine and norepinephrine; subtypes include α1, α2, β1, β2, and β3 receptors
  • Adrenergic transporter (norepinephrine transporter), a protein transporting norepinephrine from the synaptic cleft into nerve cells

Regarding pharmaceutical drugs:

  • Adrenergic receptor agonist, a type of drug activating one or more subtypes of adrenergic receptors.
  • This includes drugs regulating blood pressure and antiasthmatic drugs.
  • Adrenergic receptor antagonist, a type of drug blocking one or more subtypes of adrenergic receptors.
  • This mainly includes drugs lowering blood pressure.
  • Adrenergic reuptake inhibitor, a type of drug blocking the norepinephrine transporter.
  • This includes antidepressants and drugs against ADHD.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Adrenergic >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Dopaminergic?

Introduction

Dopaminergic means “related to dopamine” (literally, “working on dopamine”), dopamine being a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain.

Outline

Dopaminergic brain pathways facilitate dopamine-related activity. For example, certain proteins such as the dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), and dopamine receptors can be classified as dopaminergic, and neurons that synthesize or contain dopamine and synapses with dopamine receptors in them may also be labelled as dopaminergic.

Enzymes that regulate the biosynthesis or metabolism of dopamine such as aromatic L-amino acid decarboxylase or DOPA decarboxylase, monoamine oxidase (MAO), and catechol O-methyl transferase (COMT) may be referred to as dopaminergic as well. Also, any endogenous or exogenous chemical substance that acts to affect dopamine receptors or dopamine release through indirect actions (for example, on neurons that synapse onto neurons that release dopamine or express dopamine receptors) can also be said to have dopaminergic effects, two prominent examples being opioids, which enhance dopamine release indirectly in the reward pathways, and some substituted amphetamines, which enhance dopamine release directly by binding to and inhibiting VMAT2.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Dopaminergic >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is a Norepinephrine-Dopamine Releasing Agent?

Introduction

A norepinephrine–dopamine releasing agent (NDRA) is a type of drug which induces the release of norepinephrine (and epinephrine) and dopamine in the body and/or brain.

Examples of NDRAs include phenethylamine, tyramine, amphetamine, methamphetamine, lisdexamfetamine, cathinone, methcathinone, propylhexedrine, phenmetrazine, pemoline, 4-methylaminorex, and benzylpiperazine.

A closely related type of drug is a norepinephrine–dopamine reuptake inhibitor (NDRI).

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Norepinephrine-dopamine_releasing_agent >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is a Norepinephrine-Dopamine Reuptake Inhibitor?

Introduction

A norepinephrine–dopamine reuptake inhibitor (NDRI) is a drug used for the treatment of clinical depression, attention deficit hyperactivity disorder (ADHD), narcolepsy, and the management of Parkinson’s disease. The drug acts as a reuptake inhibitor for the neurotransmitters norepinephrine and dopamine by blocking the action of the norepinephrine transporter (NET) and the dopamine transporter (DAT), respectively. This in turn leads to increased extracellular concentrations of both norepinephrine and dopamine and, therefore, an increase in adrenergic and dopaminergic neurotransmission.

A closely related type of drug is a norepinephrine–dopamine releasing agent (NDRA).

List of NDRIs

The section only lists compounds that are selective for NET and DAT relative to the serotonin transporter (SERT). For a list of compounds that inhibit reuptake at all three transporters, see serotonin–norepinephrine–dopamine reuptake inhibitor.

Many NDRIs exist, including the following:

  • Amineptine (Survector, Maneon, Directim)
  • Bupropion (Wellbutrin, Zyban)
  • Desoxypipradrol (2-DPMP)
  • Dexmethylphenidate (Focalin)
  • Difemetorex (Cleofil)
  • Diphenylprolinol (D2PM)
  • Ethylphenidate
  • Fencamfamine (Glucoenergan, Reactivan)
  • Fencamine (Altimina, Sicoclor)
  • Lefetamine (Santenol)
  • Methylenedioxypyrovalerone (MDPV)
  • Methylphenidate (Ritalin, Concerta, Metadate, Methylin)
  • Nomifensine (Merital)
  • O-2172
  • Phenylpiracetam (Phenotropil, Carphedon)
  • Pipradrol (Meretran)
  • Prolintane (Promotil, Katovit)
  • Pyrovalerone (Centroton, Thymergix)
  • Solriamfetol (Sunosi)
  • Tametraline (CP-24,411)
  • WY-46824

Amphetamine and many of its immediate derivatives (i.e., the substituted amphetamines) are also both non-competitive and competitive inhibitors of the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT) proteins. Amphetamine itself has comparatively low affinity for SERT relative to DAT and NET. Consequently, amphetamine is usually classified as an NDRI instead of an SNDRI. However, the substituted amphetamines have a very diverse effects profile, and many of them have significant inhibiting effects on the SERT.

Amphetamine and many of the other substituted amphetamines are inhibitors of VMAT2 and potent agonists of the trace amine-associated receptor 1 (TAAR1); agonism of TAAR1 triggers phosphorylation events that result in both non-competitive reuptake inhibition and reversed transport direction of monoamine transporter proteins. As a result, monoamines flow out of the cell and into the synaptic cleft. Thus, amphetamine and its derivatives have a pharmacological profile that is much different than classical NDRIs, but analogous to trace amines.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Norepinephrine-dopamine_reuptake_inhibitor >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Norepinephrine?

Introduction

Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name “noradrenaline” (from Latin ad, “near”, and ren, “kidney”) is more commonly used in the United Kingdom, whereas “norepinephrine” (from Ancient Greek ἐπῐ́ (epí), “upon”, and νεφρός (nephrós), “kidney”) is usually preferred in the United States. “Norepinephrine” is also the international nonproprietary name given to the drug. Regardless of which name is used for the substance itself, parts of the body that produce or are affected by it are referred to as noradrenergic.

The general function of norepinephrine is to mobilise the brain and body for action. Norepinephrine release is lowest during sleep, rises during wakefulness, and reaches much higher levels during situations of stress or danger, in the so-called fight-or-flight response. In the brain, norepinephrine increases arousal and alertness, promotes vigilance, enhances formation and retrieval of memory, and focuses attention; it also increases restlessness and anxiety. In the rest of the body, norepinephrine increases heart rate and blood pressure, triggers the release of glucose from energy stores, increases blood flow to skeletal muscle, reduces blood flow to the gastrointestinal system, and inhibits voiding of the bladder and gastrointestinal motility.

In the brain, noradrenaline is produced in nuclei that are small yet exert powerful effects on other brain areas. The most important of these nuclei is the locus coeruleus, located in the pons. Outside the brain, norepinephrine is used as a neurotransmitter by sympathetic ganglia located near the spinal cord or in the abdomen, as well as Merkel cells located in the skin. It is also released directly into the bloodstream by the adrenal glands. Regardless of how and where it is released, norepinephrine acts on target cells by binding to and activating adrenergic receptors located on the cell surface.

A variety of medically important drugs work by altering the actions of noradrenaline systems. Noradrenaline itself is widely used as an injectable drug for the treatment of critically low blood pressure. Stimulants often increase, enhance, or otherwise act as agonists of norepinephrine. Drugs such as cocaine and methylphenidate act as reuptake inhibitors of norepinephrine, as do some antidepressants, such as those in the SNRI class. One of the more notable drugs in the stimulant class is amphetamine, which acts as a dopamine and norepinephrine analog, reuptake inhibitor, as well as an agent that increases the amount of global catecholamine signaling throughout the nervous system by reversing transporters in the synapses. Beta blockers, which counter some of the effects of noradrenaline by blocking their receptors, are frequently used to treat glaucoma, migraine, and a range of cardiovascular problems. Alpha blockers, which counter a different set of noradrenaline effects, are used to treat several cardiovascular and psychiatric conditions. Alpha-2 agonists often have a sedating effect and are commonly used as anesthesia enhancers in surgery, as well as in treatment of drug or alcohol dependence. For reasons that are still unclear, some Alpha-2 drugs, such as guanfacine, have also been shown to be effective in the treatment of anxiety disorders and ADHD. Many important psychiatric drugs exert strong effects on noradrenaline systems in the brain, resulting in side-effects that may be helpful or harmful.

Refer to Norepinephrine (Medication).

Brief History

Early in the twentieth century Walter Cannon, who had popularized the idea of a sympathoadrenal system preparing the body for fight and flight, and his colleague Arturo Rosenblueth developed a theory of two sympathins, sympathin E (excitatory) and sympathin I (inhibitory), responsible for these actions. The Belgian pharmacologist Zénon Bacq as well as Canadian and US pharmacologists between 1934 and 1938 suggested that noradrenaline might be a sympathetic transmitter. In 1939, Hermann Blaschko and Peter Holtz independently identified the biosynthetic mechanism for norepinephrine in the vertebrate body. In 1945 Ulf von Euler published the first of a series of papers that established the role of norepinephrine as a neurotransmitter. He demonstrated the presence of norepinephrine in sympathetically innervated tissues and brain, and adduced evidence that it is the sympathin of Cannon and Rosenblueth.

Stanley Peart was the first to demonstrate the release of noradrenaline after the stimulation of sympathetic nerves.

Structure

Norepinephrine is a catecholamine and a phenethylamine. Its structure differs from that of epinephrine only in that epinephrine has a methyl group attached to its nitrogen, whereas the methyl group is replaced by a hydrogen atom in norepinephrine. The prefix nor- is derived as an abbreviation of the word “normal”, used to indicate a demethylated compound. Norepinephrine consists of a catechol moiety (a benzene ring with two adjoining hydroxyl groups in the meta-para position), and an ethylamine side chain consisting of a hydroxyl group bonded in the benzylic position.

Biochemical Mechanisms

Biosynthesis

Norepinephrine is synthesized from the amino acid tyrosine by a series of enzymatic steps in the adrenal medulla and postganglionic neurons of the sympathetic nervous system. While the conversion of tyrosine to dopamine occurs predominantly in the cytoplasm, the conversion of dopamine to norepinephrine by dopamine β-monooxygenase occurs predominantly inside neurotransmitter vesicles. The metabolic pathway is:

Phenylalanine → Tyrosine → L-DOPA → Dopamine → Norepinephrine

Thus the direct precursor of norepinephrine is dopamine, which is synthesized indirectly from the essential amino acid phenylalanine or the non-essential amino acid tyrosine. These amino acids are found in nearly every protein and, as such, are provided by ingestion of protein-containing food, with tyrosine being the most common.

Phenylalanine is converted into tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and probably ferrous iron (Fe2+) as cofactors. Conversion of tyrosine to L-DOPA is inhibited by Metyrosine, a tyrosine analog. L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as a cofactor. Dopamine is then converted into norepinephrine by the enzyme dopamine β-monooxygenase (formerly known as dopamine β-hydroxylase), with O2 and ascorbic acid as cofactors.

Norepinephrine itself can further be converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as cofactor.

Degradation

In mammals, norepinephrine is rapidly degraded to various metabolites. The initial step in the breakdown can be catalysed by either of the enzymes monoamine oxidase (mainly monoamine oxidase A) or COMT. From there, the breakdown can proceed by a variety of pathways. The principal end products are either Vanillylmandelic acid or a conjugated form of MHPG, both of which are thought to be biologically inactive and are excreted in the urine.

Functions

Cellular Effects

Like many other biologically active substances, norepinephrine exerts its effects by binding to and activating receptors located on the surface of cells. Two broad families of norepinephrine receptors have been identified, known as alpha and beta adrenergic receptors.

  • Alpha receptors are divided into subtypes α1 and α2; and
  • Beta receptors into subtypes β1, β2, and β3.

All of these function as G protein-coupled receptors, meaning that they exert their effects via a complex second messenger system. Alpha-2 receptors usually have inhibitory effects, but many are located pre-synaptically (i.e. on the surface of the cells that release norepinephrine), so the net effect of alpha-2 activation is often a decrease in the amount of norepinephrine released. Alpha-1 receptors and all three types of beta receptors usually have excitatory effects.

Storage, Release, and Reuptake

Inside the brain norepinephrine functions as a neurotransmitter, and is controlled by a set of mechanisms common to all monoamine neurotransmitters. After synthesis, norepinephrine is transported from the cytosol into synaptic vesicles by the vesicular monoamine transporter (VMAT). VMAT can be inhibited by Reserpine causing a decrease in neurotransmitter stores. Norepinephrine is stored in these vesicles until it is ejected into the synaptic cleft, typically after an action potential causes the vesicles to release their contents directly into the synaptic cleft through a process called exocytosis.

Once in the synapse, norepinephrine binds to and activates receptors. After an action potential, the norepinephrine molecules quickly become unbound from their receptors. They are then absorbed back into the presynaptic cell, via reuptake mediated primarily by the norepinephrine transporter (NET). Once back in the cytosol, norepinephrine can either be broken down by monoamine oxidase or repackaged into vesicles by VMAT, making it available for future release.

Sympathetic Nervous System

Norepinephrine is the main neurotransmitter used by the sympathetic nervous system, which consists of about two dozen sympathetic chain ganglia located next to the spinal cord, plus a set of prevertebral ganglia located in the chest and abdomen. These sympathetic ganglia are connected to numerous organs, including the eyes, salivary glands, heart, lungs, liver, gallbladder, stomach, intestines, kidneys, urinary bladder, reproductive organs, muscles, skin, and adrenal glands. Sympathetic activation of the adrenal glands causes the part called the adrenal medulla to release norepinephrine (as well as epinephrine) into the bloodstream, from which, functioning as a hormone, it gains further access to a wide variety of tissues.

Broadly speaking, the effect of norepinephrine on each target organ is to modify its state in a way that makes it more conducive to active body movement, often at a cost of increased energy use and increased wear and tear. This can be contrasted with the acetylcholine-mediated effects of the parasympathetic nervous system, which modifies most of the same organs into a state more conducive to rest, recovery, and digestion of food, and usually less costly in terms of energy expenditure.

The sympathetic effects of norepinephrine include:

  • In the eyes, an increase in production of tears, making the eyes more moist,[18] and pupil dilation through contraction of the iris dilator.
  • In the heart, an increase in the amount of blood pumped.
  • In brown adipose tissue, an increase in calories burned to generate body heat (thermogenesis).
  • Multiple effects on the immune system. The sympathetic nervous system is the primary path of interaction between the immune system and the brain, and several components receive sympathetic inputs, including the thymus, spleen, and lymph nodes. However the effects are complex, with some immune processes activated while others are inhibited.
  • In the arteries, constriction of blood vessels, causing an increase in blood pressure.
  • In the kidneys, release of renin and retention of sodium in the bloodstream.
  • In the liver, an increase in production of glucose, either by glycogenolysis after a meal or by gluconeogenesis when food has not recently been consumed. Glucose is the body’s main energy source in most conditions.
  • In the pancreas, increased release of glucagon, a hormone whose main effect is to increase the production of glucose by the liver.
  • In skeletal muscles, an increase in glucose uptake.
  • In adipose tissue (i.e., fat cells), an increase in lipolysis, that is, conversion of fat to substances that can be used directly as energy sources by muscles and other tissues.
  • In the stomach and intestines, a reduction in digestive activity. This results from a generally inhibitory effect of norepinephrine on the enteric nervous system, causing decreases in gastrointestinal mobility, blood flow, and secretion of digestive substances.

Noradrenaline and ATP are sympathetic co-transmitters. It is found that the endocannabinoid anandamide and the cannabinoid WIN 55,212-2 can modify the overall response to sympathetic nerve stimulation, which indicates that prejunctional CB1 receptors mediate the sympatho-inhibitory action. Thus cannabinoids can inhibit both the noradrenergic and purinergic components of sympathetic neurotransmission.

Central Nervous system

The noradrenergic neurons in the brain form a neurotransmitter system, that, when activated, exerts effects on large areas of the brain. The effects are manifested in alertness, arousal, and readiness for action.

Noradrenergic neurons (i.e. neurons whose primary neurotransmitter is norepinephrine) are comparatively few in number, and their cell bodies are confined to a few relatively small brain areas, but they send projections to many other brain areas and exert powerful effects on their targets. These noradrenergic cell groups were first mapped in 1964 by Annica Dahlström and Kjell Fuxe, who assigned them labels starting with the letter “A” (for “aminergic”). In their scheme, areas A1 through A7 contain the neurotransmitter norepinephrine (A8 through A14 contain dopamine). Noradrenergic cell group A1 is located in the caudal ventrolateral part of the medulla, and plays a role in the control of body fluid metabolism. Noradrenergic cell group A2 is located in a brainstem area called the solitary nucleus; these cells have been implicated in a variety of responses, including control of food intake and responses to stress. Cell groups A5 and A7 project mainly to the spinal cord.

The most important source of norepinephrine in the brain is the locus coeruleus, which contains noradrenergic cell group A6 and adjoins cell group A4. The locus coeruleus is quite small in absolute terms—in primates it is estimated to contain around 15,000 neurons, less than one-millionth of the neurons in the brain—but it sends projections to every major part of the brain and also to the spinal cord.

The level of activity in the locus coeruleus correlates broadly with vigilance and speed of reaction. LC activity is low during sleep and drops to virtually nothing during the REM (dreaming) state. It runs at a baseline level during wakefulness, but increases temporarily when a person is presented with any sort of stimulus that draws attention. Unpleasant stimuli such as pain, difficulty breathing, bladder distension, heat or cold generate larger increases. Extremely unpleasant states such as intense fear or intense pain are associated with very high levels of LC activity.

Norepinephrine released by the locus coeruleus affects brain function in a number of ways. It enhances processing of sensory inputs, enhances attention, enhances formation and retrieval of both long term and working memory, and enhances the ability of the brain to respond to inputs by changing the activity pattern in the prefrontal cortex and other areas. The control of arousal level is strong enough that drug-induced suppression of the LC has a powerful sedating effect.

There is great similarity between situations that activate the locus coeruleus in the brain and situations that activate the sympathetic nervous system in the periphery: the LC essentially mobilises the brain for action while the sympathetic system mobilises the body. It has been argued that this similarity arises because both are to a large degree controlled by the same brain structures, particularly a part of the brainstem called the nucleus gigantocellularis.

Skin

Norepinephrine is also produced by Merkel cells which are part of the somatosensory system. It activates the afferent sensory neuron.

Pharmacology

Refer to Norepinephrine (Medication).

A large number of important drugs exert their effects by interacting with norepinephrine systems in the brain or body. Their uses include treatment of cardiovascular problems, shock, and a variety of psychiatric conditions. These drugs are divided into: sympathomimetic drugs which mimic or enhance at least some of the effects of norepinephrine released by the sympathetic nervous system; sympatholytic drugs, in contrast, block at least some of the effects. Both of these are large groups with diverse uses, depending on exactly which effects are enhanced or blocked.

Norepinephrine itself is classified as a sympathomimetic drug: its effects when given by intravenous injection of increasing heart rate and force and constricting blood vessels make it very useful for treating medical emergencies that involve critically low blood pressure. Surviving Sepsis Campaign recommended norepinephrine as first line agent in treating septic shock which is unresponsive to fluid resuscitation, supplemented by vasopressin and epinephrine. Dopamine usage is restricted only to highly selected patients.

Antagonists

Beta Blockers

These are sympatholytic drugs that block the effects of beta adrenergic receptors while having little or no effect on alpha receptors. They are sometimes used to treat high blood pressure, atrial fibrillation and congestive heart failure, but recent reviews have concluded that other types of drugs are usually superior for those purposes. Beta blockers may be a viable choice for other cardiovascular conditions, though, including angina and Marfan syndrome. They are also widely used to treat glaucoma, most commonly in the form of eyedrops. Because of their effects in reducing anxiety symptoms and tremor, they have sometimes been used by entertainers, public speakers and athletes to reduce performance anxiety, although they are not medically approved for that purpose and are banned by the International Olympic Committee.

However, the usefulness of beta blockers is limited by a range of serious side effects, including slowing of heart rate, a drop in blood pressure, asthma, and reactive hypoglycaemia. The negative effects can be particularly severe in people with diabetes.

Alpha Blockers

These are sympatholytic drugs that block the effects of adrenergic alpha receptors while having little or no effect on beta receptors. Drugs belonging to this group can have very different effects, however, depending on whether they primarily block alpha-1 receptors, alpha-2 receptors, or both. Alpha-2 receptors, as described elsewhere in this article, are frequently located on norepinephrine-releasing neurons themselves and have inhibitory effects on them; consequently, blockage of alpha-2 receptors usually results in an increase in norepinephrine release. Alpha-1 receptors are usually located on target cells and have excitatory effects on them; consequently, blockage of alpha-1 receptors usually results in blocking some of the effects of norepinephrine. Drugs such as phentolamine that act on both types of receptors can produce a complex combination of both effects. In most cases when the term “alpha blocker” is used without qualification, it refers to a selective alpha-1 antagonist.

Selective alpha-1 blockers have a variety of uses. Since one of their effects is to inhibit the contraction of the smooth muscle in the prostate, they are often used to treat symptoms of benign prostatic hyperplasia. Alpha-blockers also likely help people pass their kidney stones. Their effects on the central nervous system make them useful for treating generalised anxiety disorder, panic disorder, and posttraumatic stress disorder (PTSD). They may, however, have significant side-effects, including a drop in blood pressure.

Some antidepressants function partly as selective alpha-2 blockers, but the best-known drug in that class is yohimbine, which is extracted from the bark of the African yohimbe tree. Yohimbine acts as a male potency enhancer, but its usefulness for that purpose is limited by serious side-effects including anxiety and insomnia. Overdoses can cause a dangerous increase in blood pressure. Yohimbine is banned in many countries, but in the United States, because it is extracted from a plant rather than chemically synthesized, it is sold over the counter as a nutritional supplement.

Alpha-2 Agonists

These are sympathomimetic drugs that activate alpha-2 receptors or enhance their effects. Because alpha-2 receptors are inhibitory and many are located presynaptically on norepinephrine-releasing cells, the net effect of these drugs is usually to reduce the amount of norepinephrine released. Drugs in this group that are capable of entering the brain often have strong sedating effects, due to their inhibitory effects on the locus coeruleus. Clonidine, for example, is used for the treatment of anxiety disorders and insomnia, and also as a sedative premedication for patients about to undergo surgery. Xylazine, another drug in this group, is also a powerful sedative and is often used in combination with ketamine as a general anaesthetic for veterinary surgery—in the United States it has not been approved for use in humans.

Stimulants and Antidepressants

These are drugs whose primary effects are thought to be mediated by different neurotransmitter systems (dopamine for stimulants, serotonin for antidepressants), but many also increase levels of norepinephrine in the brain. Amphetamine, for example, is a stimulant that increases release of norepinephrine as well as dopamine. Monoamine oxidase inhibitors are antidepressants that inhibit the metabolic degradation of norepinephrine as well as serotonin and dopamine. In some cases it is difficult to distinguish the norepinephrine-mediated effects from the effects related to other neurotransmitters.

Diseases and Disorders

A number of important medical problems involve dysfunction of the norepinephrine system in the brain or body.

Sympathetic Hyperactivation

Hyperactivation of the sympathetic nervous system is not a recognised condition in itself, but it is a component of a number of conditions, as well as a possible consequence of taking sympathomimetic drugs. It causes a distinctive set of symptoms including aches and pains, rapid heartbeat, elevated blood pressure, sweating, palpitations, anxiety, headache, paleness, and a drop in blood glucose. If sympathetic activity is elevated for an extended time, it can cause weight loss and other stress-related body changes.

The list of conditions that can cause sympathetic hyperactivation includes severe brain injury, spinal cord damage, heart failure, high blood pressure, kidney disease, and various types of stress.

Pheochromocytoma

A pheochromocytoma is a rarely occurring tumour of the adrenal medulla, caused either by genetic factors or certain types of cancer. The consequence is a massive increase in the amount of norepinephrine and epinephrine released into the bloodstream. The most obvious symptoms are those of sympathetic hyperactivation, including particularly a rise in blood pressure that can reach fatal levels. The most effective treatment is surgical removal of the tumour.

Stress

Stress, to a physiologist, means any situation that threatens the continued stability of the body and its functions. Stress affects a wide variety of body systems: the two most consistently activated are the hypothalamic-pituitary-adrenal axis and the norepinephrine system, including both the sympathetic nervous system and the locus coeruleus-centred system in the brain. Stressors of many types evoke increases in noradrenergic activity, which mobilises the brain and body to meet the threat. Chronic stress, if continued for a long time, can damage many parts of the body. A significant part of the damage is due to the effects of sustained norepinephrine release, because of norepinephrine’s general function of directing resources away from maintenance, regeneration, and reproduction, and toward systems that are required for active movement. The consequences can include slowing of growth (in children), sleeplessness, loss of libido, gastrointestinal problems, impaired disease resistance, slower rates of injury healing, depression, and increased vulnerability to addiction.

ADHD

Attention deficit hyperactivity disorder (ADHD) is a psychiatric condition involving problems with attention, hyperactivity, and impulsiveness. It is most commonly treated using stimulant drugs such as methylphenidate (Ritalin), whose primary effect is to increase dopamine levels in the brain, but drugs in this group also generally increase brain levels of norepinephrine, and it has been difficult to determine whether these actions are involved in their clinical value. There is also substantial evidence that many people with ADHD show biomarkers involving altered norepinephrine processing. Several drugs whose primary effects are on norepinephrine, including guanfacine, clonidine, and atomoxetine, have been tried as treatments for ADHD, and found to have effects comparable to those of stimulants.

Autonomic Failure

Several conditions, including Parkinson’s disease, diabetes and so-called pure autonomic failure, can cause a loss of norepinephrine-secreting neurons in the sympathetic nervous system. The symptoms are widespread, the most serious being a reduction in heart rate and an extreme drop in resting blood pressure, making it impossible for severely affected people to stand for more than a few seconds without fainting. Treatment can involve dietary changes or drugs.

REM Sleep Deprivation

Norepiprephine prevents REM sleep, and lack of REM sleep increases noradrenaline secretion as a result of the locus coeruleus not ceasing producing it. It causes neurodegeneration if its loss is sustained for several days.

Comparative Biology and Evolution

Norepinephrine has been reported to exist in a wide variety of animal species, including protozoa, placozoa and cnidaria (jellyfish and related species), but not in ctenophores (comb jellies), whose nervous systems differ greatly from those of other animals. It is generally present in deuterostomes (vertebrates, etc.), but in protostomes (arthropods, molluscs, flatworms, nematodes, annelids, etc.) it is replaced by octopamine, a closely related chemical with a closely related synthesis pathway. In insects, octopamine has alerting and activating functions that correspond (at least roughly) with the functions of norepinephrine in vertebrates. It has been argued that octopamine evolved to replace norepinephrine rather than vice versa; however, the nervous system of amphioxus (a primitive chordate) has been reported to contain octopamine but not norepinephrine, which presents difficulties for that hypothesis.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Norepinephrine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Norepineprhine (Medication)?

Introduction

Norepinephrine, also known as noradrenaline, is a medication used to treat people with very low blood pressure. It is the typical medication used in sepsis if low blood pressure does not improve following intravenous fluids. It is the same molecule as the hormone and neurotransmitter norepinephrine. It is given by slow injection into a vein.

Common side effects include headache, slow heart rate, and anxiety. Other side effects include an irregular heartbeat. If it leaks out of the vein at the site it is being given, norepinephrine can result in limb ischemia. If leakage occurs the use of phentolamine in the area affected may improve outcomes. Norepinephrine works by binding and activating alpha adrenergic receptors.

Norepinephrine was discovered in 1946 and was approved for medical use in the United States in 1950. It is available as a generic medication.

Medical Uses

Norepinephrine is used mainly as a sympathomimetic drug to treat people in vasodilatory shock states such as septic shock and neurogenic shock, while showing fewer adverse side-effects compared to dopamine treatment.

Mechanism of Action

It stimulates α1 and α2 adrenergic receptors to cause blood vessel contraction, thus increases peripheral vascular resistance and resulted in increased blood pressure. This effect also reduces the blood supply to gastrointestinal tract and kidneys. Norepinephrine acts on beta-1 adrenergic receptors, causing increase in heart rate and cardiac output. However, the elevation in heart rate is only transient, as baroreceptor response to the rise in blood pressure as well as enhanced vagal tone ultimately result in a sustained decrease in heart rate. Norepinephrine acts more on alpha receptors than the beta receptors.

Names

Norepinephrine is the INN (or International Nonproprietary Name) while noradrenaline is the BAN (British Approved Name).

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Norepinephrine_(medication) >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is the Glutamate Hypothesis of Schizophrenia?

Introduction

The glutamate hypothesis of schizophrenia models the subset of pathologic mechanisms of schizophrenia linked to glutamatergic signalling. The hypothesis was initially based on a set of clinical, neuropathological, and, later, genetic findings pointing at a hypofunction of glutamatergic signalling via NMDA receptors. While thought to be more proximal to the root causes of schizophrenia, it does not negate the dopamine hypothesis, and the two may be ultimately brought together by circuit-based models. The development of the hypothesis allowed for the integration of the GABAergic and oscillatory abnormalities into the converging disease model and made it possible to discover the causes of some disruptions.

Like the dopamine hypothesis, the development of the glutamate hypothesis developed from the observed effects of mind-altering drugs. However, where dopamine agonists can mimic positive symptoms with significant risks to brain structures during and after use, NMDA antagonists mimic some positive and negative symptoms with less brain harm, when combined with a GABAA activating drug. Likely, both dopaminergic and glutaminergic abnormalities are implicated in schizophrenia, from a profound alteration in the function of the chemical synapses, as well as electrical synaptic irregularities. These form a portion of the complex constellation of factors, neurochemically, psychologically, psychosocially, and structurally, which result in schizophrenia.

Refer to Dopamine Hypothesis of Schizophrenia.

The Role of Heteromer Formation

Alteration in the expression, distribution, autoregulation, and prevalence of specific glutamate heterodimers alters relative levels of paired G proteins to the heterodimer-forming glutamate receptor in question.

Namely: 5HT2A and mGlu2 form a dimer which mediates psychotomimetic and entheogenic effects of psychedelics; as such this receptor is of interest in schizophrenia. Agonists at either constituent receptor may modulate the other receptor allosterically; e.g. glutamate-dependent signalling via mGlu2 may modulate 5HT2A-ergic activity. Equilibrium between mGlu2/5HT2A is altered against tendency towards of psychosis by neuroleptic-pattern 5HT2A antagonists and mGlu2 agonists; both display antipsychotic activity. AMPA, the most widely distributed receptor in the brain, is a tetrameric ionotropic receptor; alterations in equilibrium between constituent subunits are seen in mGlu2/5HT2A antagonist (antipsychotic) administration- GluR2 is seen to be upregulated in the PFC while GluR1 downregulates in response to antipsychotic administration.

Reelin abnormalities may also be involved in the pathogenesis of schizophrenia via a glutamate-dependent mechanism. Reelin expression deficits are seen in schizophrenia, and reelin enhances expression of AMPA and NMDA alike. As such deficits in these two ionotropic glutamate receptors may be partially explained by altered reelin cascades. Neuregulin 1 deficits may also be involved in glutaminergic hypofunction as NRG1 hypofunction leads to schizophrenia-pattern behaviour in mice; likely due in part to reduced NMDA signalling via Src suppression.

The Role of Synaptic Pruning

Various neurotrophic factors dysregulate in schizophrenia and other mental illnesses, namely BDNF; expression of which is lowered in schizophrenia as well as in major depression and bipolar disorder. BDNF regulates in an AMPA-dependent mechanism – AMPA and BDNF alike are critical mediators of growth cone survival. NGF, another neurotrophin involved in maintenance of synaptic plasticity is similarly seen in deficit.

Dopaminergic excess, classically understood to result in schizophrenia, puts oxidative load on neurons; leading to inflammatory response and microglia activation. Similarly, toxoplasmosis infection in the CNS (positively correlated to schizophrenia) activates inflammatory cascades, also leading to microglion activation. The lipoxygenase-5 inhibitor minocycline has been seen to be marginally effective in halting schizophrenia progression. One of such inflammatory cascades’ downstream transcriptional target, NF-κB, is observed to have altered expression in schizophrenia.

In addition, CB2 is one of the most widely distributed glial cell-expressed receptors, downregulation of this inhibitory receptor may increase global synaptic pruning activity. While difference in expression or distribution is observed, when the CB2 receptor is knocked out in mice, schizophreniform behaviours manifest. This may deregulate synaptic pruning processes in a tachyphlaxis mechanism wherein immediate excess CB2 activity leads to phosphorylation of the receptor via GIRK, resultant in b-arrestin-dependent internalisation and subsequent trafficking to the proteasome for degradation.

The Role of Endogenous Antagonists

Alterations in production of endogenous NMDA antagonists such as agmatine and kynurenic acid have been shown in schizophrenia. Deficit in NMDA activity produces psychotomimetic effects, though it remains to be seen if the blockade of NMDA via these agents is causative or actually mimetic of patterns resultant from monoaminergic disruption.

AMPA, the most widely distributed receptor in the brain, mediates long term potentiation via activity-dependent modulation of AMPA density. GluR1 subunit-containing AMPA receptors are Ca2+ permeable while GluR2/3 subunit-positive receptors are nearly impermeable to calcium ions. In the regulated pathway, GluR1 dimers populate the synapse at a rate proportional to NMDA-ergic Ca2+ influx. In the constitutative pathway, GluR2/3 dimers populate the synapse at a steady state.

This forms a positive feedback loop, where a small trigger impulse degating NMDA from Mg2+ pore blockade results in calcium influx, this calcium influx then triggers trafficking of GluR1-containing(Ca2+ permeable) subunits to the PSD, such trafficking of GluR1-positive AMPA to the postsynaptic neuron allows for upmodulation of the postsynaptic neuron’s calcium influx in response to presynaptic calcium influx. Robust negative feedback at NMDA from kynurenic acid, magnesium, zinc, and agmatine prevents runaway feedback.

Misregulation of this pathway would sympathetically dysregulate LTP via disruption of NMDA. Such alteration in LTP may play a role, specifically in negative symptoms of schizophrenia, in creation of more broad disruptions such as loss of brain volume; an effect of the disease which antidopaminergics actually worsen, rather than treat.

The Role of a7 Nicotinic

Anandamide, an endocannabinoid, is an a7 nicotinic antagonist. Cigarettes, consumed far out of proportion by schizophrenics, contain nornitrosonicotine; a potent a7 antagonist. This may indicate a7 pentameter excess as a causative factor, or possibly as a method of self-medication to combat antipsychotic side effects. Cannabidiol, a FAAH inhibitor, increases levels in anandamide and may have antipsychotic effect; though results are mixed here as anandamide also is a cannabinoid and as such displays some psychotomimetic effect. However, a7 nicotinic agonists have been indicated as potential treatments for schizophrenia, though evidence is somewhat contradictory there is indication a7 nAChR is somehow involved in the pathogenesis of schizophrenia.

The Role of 5-HT

This deficit in activation also results in a decrease in activity of 5-HT1A receptors in the raphe nucleus. This serves to increase global serotonin levels, as 5-HT1A serves as an autoreceptor. The 5-HT1B receptor, also acting as an autoreceptor, specifically within the striatum, but also parts of basal ganglia then will inhibit serotonin release. This disinhibits frontal dopamine release. The local deficit of 5-HT within the striatum, basal ganglia, and prefrontal cortex causes a deficit of excitatory 5-HT6 signalling. This could possibly be the reason antipsychotics sometimes are reported to aggravate negative symptoms as antipsychotics are 5HT6 antagonists This receptor is primarily GABAergic, as such, it causes an excess of glutamatergic, noradrenergic, dopaminergic, and cholinergic activity within the prefrontal cortex and the striatum. An excess of 5-HT7 signaling within the thalamus also creates too much excitatory transmission to the prefrontal cortex. Combined with another critical abnormality observed in those with schizophrenia: 5-HT2A dysfunction, this altered signalling cascade creates cortical, thus cognitive abnormalities. 5-HT2A allows a link between cortical, thus conscious, and the basal ganglia, unconscious. Axons from 5-HT2A neurons in layer V of the cerebral cortex reach the basal ganglia, forming a feedback loop. Signalling from layer V of the cerebral cortex to the basal ganglia alters 5-HT2C signalling. This feedback loop with 5-HT2A/5-HT2C is how the outer cortex layers can exert some control over our neuropeptides, specifically opioid peptides, oxytocin and vasopressin. This alteration in this limbic-layer V axis may create the profound change in social cognition (and sometimes cognition as a whole) that is observed in schizophrenia. However, genesis of the actual alterations is a much more complex phenomena.

The Role of Inhibitory Transmission

The cortico-basal ganglia-thalamo-cortical loop is the source of the ordered input necessary for a higher level upper cortical loop. Feedback is controlled by the inhibitory potential of the cortices via the striatum. Through 5-HT2A efferents from layer V of the cortex transmission proceeds through the striatum into the globulus pallidus internal and substantia nigra pars compacta. This core input to the basal ganglia is combined with input from the subthalamic nucleus. The only primarily dopaminergic pathway in this loop is a reciprocal connection from the substantia nigra pars reticulata to the striatum.

Dopaminergic drugs such as dopamine releasing agents and direct dopamine receptor agonists create alterations in this primarily GABAergic pathway via increased dopaminergic feedback from the substantia nigra pars compacta to the striatum. However, dopamine also modulates other cortical areas, namely the VTA; with efferents to the amygdala and locus coeruleus, likely modulating anxiety and paranoid aspects of psychotic experience. As such, the glutamate hypothesis is probably not an explanation of primary causative factors in positive psychosis, but rather might possibly be an explanation for negative symptoms.

Dopamine hypothesis of schizophrenia elaborates upon the nature of abnormal lateral structures found in someone with a high risk for psychosis.

Altered Signalling Cascades

Again, thalamic input from layer V is a crucial factor in the functionality of the human brain. It allows the two sides to receive similar inputs, thus be able to perceive the same world. In psychosis, thalamic input loses much of its integrated character: hyperactive core feedback loops overwhelm the ordered output. This is due to excessive D2 and 5-HT2A activity. This alteration in input to the top and bottom of the cortex. The altered 5-HT signal cascade enhances the strength of excitatory thalamic input from layer V. This abnormality, enhancing the thalamic-cortical transmission cascade versus the corticostriatal control, creates a feedback loop, resulting in abnormally strong basal ganglia output.

The root of psychosis (experiences that cannot be explained, even within their own mind) is when basal ganglia input to layer V overwhelms the inhibitory potential of the higher cortexies resulting from striatal transmission. When combined with the excess prefrontal, specifically orbitofrontal transmission, from the hippocampus, this creates a brain prone to falling into self reinforcing belief.

However, given a specific environment, a person with this kind of brain (a human) can create a self-reinforcing pattern of maladaptive behaviour, from the altered the layer II/III and III/I axises, from the disinhibited thalamic output. Rationality is impaired, primarily as response to the deficit of oxytocin and excess of vasopressin from the abnormal 5HT2C activity.

Frontal cortex activity will be impaired, when combined with excess DA activity: the basis for the advancement of schizophrenia, but it is also the neurologic mechanism behind many other psychotic diseases as well. Heredation of schizophrenia may even be a result of conspecific “refrigerator parenting” techniques passed on though generations. However, the genetic component is the primary source of the neurological abnormalities which leave one prone to psychological disorders. Specifically, there is much overlap between bipolar disorder and schizophrenia, and other psychotic disorders.

Psychotic disorder is linked to excessive drug use, specifically dissociatives, psychedelics, stimulants, and marijuana.

Treatment

Alterations in serine racemase indicate that the endogenous NMDA agonist D-serine may be produced abnormally in schizophrenia and that d-serine may be an effective treatment for schizophrenia.

Schizophrenia is now treated by medications known as antipsychotics (or neuroleptics) that typically reduce dopaminergic activity because too much activity has been most strongly linked to positive symptoms, specifically persecutory delusions. Dopaminergic drugs do not induce the characteristic auditory hallucinations of schizophrenia. Dopaminergic drug abuse such as abuse of methamphetamine may result in a short lasting psychosis or provocation of a longer psychotic episode that may include symptoms of auditory hallucinations. The typical antipsychotics are known to have significant risks of side effects that can increase over time, and only show clinical effectiveness in reducing positive symptoms. Additionally, although newer atypical antipsychotics can have less affinity for dopamine receptors and still reduce positive symptoms, do not significantly reduce negative symptoms.

Psychotomimetic Glutamate Antagonists

Ketamine and PCP were observed to produce significant similarities to schizophrenia. Ketamine produces more similar symptoms (hallucinations, withdrawal) without observed permanent effects (other than ketamine tolerance). Both arylcyclohexamines have some(uM) affinity to D2 and as triple reuptake inhibitors. PCP is representative symptomatically, but does appear to cause brain structure changes seen in schizophrenia. Although unconfirmed, Dizocilpine discovered by a team at Merck seems to model both the positive and negative effects in a manner very similar to schizophreniform disorders.

Possible Glutamate based Treatment

An early clinical trial by Eli Lilly of the drug LY2140023 has shown potential for treating schizophrenia without the weight gain and other side-effects associated with conventional antipsychotics. A trial in 2009 failed to prove superiority over placebo or Olanzapine, but Lilly explained this as being due to an exceptionally high placebo response. However, Eli Lilly terminated further development of the compound in 2012 after it failed in phase III clinical trials. This drug acts as a selective agonist at metabotropic mGluR2 and mGluR3 glutamate receptors (the mGluR3 gene has previously been associated with schizophrenia).

Studies of glycine (and related co-agonists at the NMDA receptor) added to conventional antipsychotics have also found some evidence that these may improve symptoms in schizophrenia.

Animal Models

Research done on mice in early 2009 has shown that when the neuregulin-1\ErbB post-synaptic receptor genes are deleted, the dendritic spines of glutamate neurons initially grow, but break down during later development. This led to symptoms (such as disturbed social function, inability to adapt to predictable future stressors) that overlap with schizophrenia. This parallels the time delay for symptoms setting in with schizophrenic humans who usually appear to show normal development until early adulthood.

Disrupted in schizophrenia 1 is a gene that is disrupted in schizophrenia.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Glutamate_hypothesis_of_schizophrenia >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is the Dopamine Hypothesis of Schizophrenia?

Introduction

The dopamine hypothesis of schizophrenia or the dopamine hypothesis of psychosis is a model that attributes the positive symptoms of schizophrenia to a disturbed and hyperactive dopaminergic signal transduction.

The model draws evidence from the observation that a large number of antipsychotics have dopamine-receptor antagonistic effects. The theory, however, does not posit dopamine overabundance as a complete explanation for schizophrenia. Rather, the overactivation of D2 receptors, specifically, is one effect of the global chemical synaptic dysregulation observed in this disorder.

Refer to Glutamate Hypothesis of Schizophrenia.

Introduction

Some researchers have suggested that dopamine systems in the mesolimbic pathway may contribute to the ‘positive symptoms’ of schizophrenia, whereas problems concerning dopamine function within the mesocortical pathway may be responsible for the ‘negative symptoms’, such as avolition and alogia. Abnormal expression, thus distribution of the D2 receptor between these areas and the rest of the brain may also be implicated in schizophrenia, specifically in the acute phase. A relative excess of these receptors within the limbic system means Broca’s area, which can produce illogical language, has an abnormal connection to Wernicke’s area, which comprehends language but does not create it. Note that variation in distribution is observed within individuals, so abnormalities of this characteristic likely play a significant role in all psychological illnesses. Individual alterations are produced by differences within glutamatergic pathways within the limbic system, which are also implicated in other psychotic syndromes. Among the alterations of both synaptic and global structure, the most significant abnormalities are observed in the uncinate fasciculus and the cingulate cortex. The combination of these creates a profound dissymmetry of prefrontal inhibitory signaling, shifted positively towards the dominant side. Eventually, the cingulate gyrus becomes atrophied towards the anterior, due to long-term depression (LTD) and long-term potentiation (LTP) from the abnormally strong signals transversely across the brain. This, combined with a relative deficit in GABAergic input to Wernicke’s area, shifts the balance of bilateral communication across the corpus callosum posteriorly. Through this mechanism, hemispherical communication becomes highly shifted towards the left/dominant posterior. As such, spontaneous language from Broca’s can propagate through the limbic system to the tertiary auditory cortex. This retrograde signalling to the temporal lobes that results in the parietal lobes not recognising it as internal results in the auditory hallucinations typical of chronic schizophrenia.

In addition, significant cortical grey matter volume reductions are observed in this disorder. Specifically, the right hemisphere atrophies more, while both sides show a marked decrease in frontal and posterior volume. This indicates that abnormal synaptic plasticity occurs, where certain feedback loops become so potentiated, others receive little glutaminergic transmission. This is a direct result of the abnormal dopaminergic input to the striatum, thus (indirectly) disinhibition of thalamic activity. The excitatory nature of dopaminergic transmission means the glutamate hypothesis of schizophrenia is inextricably intertwined with this altered functioning. 5-HT also regulates monoamine neurotransmitters, including dopaminergic transmission. Specifically, the 5-HT2A receptor regulates cortical input to the basal ganglia and many typical and atypical antipsychotics are antagonists at this receptor. Several antipsychotics are also antagonists at the 5-HT2C receptor, leading to dopamine release in the structures where 5-HT2C is expressed; striatum, prefrontal cortex, nucleus accumbens, amygdala, hippocampus (all structures indicated in this disease), and currently thought to be a reason why antipsychotics with 5HT2C antagonistic properties improves negative symptoms. More research is needed to explain the exact nature of the altered chemical transmission in this disorder.

Recent evidence on a variety of animal models of psychosis, such as sensitization of animal behaviour by amphetamine, or phencyclidine (PCP, Angel Dust), or excess steroids, or by removing various genes (COMT, DBH, GPRK6, RGS9, RIIbeta), or making brain lesions in newborn animals, or delivering animals abnormally by Caesarian section, all induce a marked behavioural supersensitivity to dopamine and a marked rise in the number of dopamine D2 receptors in the high-affinity state for dopamine. This latter work implies that there are multiple genes and neuronal pathways that can lead to psychosis and that all these multiple psychosis pathways converge via the high-affinity state of the D2 receptor, the common target for all antipsychotics, typical or atypical. Combined with less inhibitory signalling from the thalamus and other basal ganglic structures, from hyoptrophy the abnormal activation of the cingulate cortex, specifically around Broca’s and Wernicke’s areas, abnormal D2 agonism can facilitate the self-reinforcing, illogical patterns of language found in such patients. In schizophrenia, this feedback loop has progressed, which produced the widespread neural atrophy characteristic of this disease. Patients on neuroleptic or antipsychotic medication have significantly less atrophy within these crucial areas. As such, early medical intervention is crucial in preventing the advancement of these profound deficits in bilateral communication at the root of all psychotic disorders. Advanced, chronic schizophrenia can not respond even to clozapine, regarded as the most effective antipsychotic, as such, a cure for highly advanced schizophrenia is likely impossible through the use of any modern antipsychotics, so the value of early intervention cannot be stressed enough.

Discussion

Evidence for the Dopamine Hypothesis

Stimulants such as amphetamine, and cocaine increase the levels of dopamine in the brain and can cause symptoms of psychosis, particularly after large doses or prolonged use. This is often referred to as “amphetamine psychosis” or “cocaine psychosis,” but may produce experiences virtually indistinguishable from the positive symptoms associated with schizophrenia. Similarly, those treated with dopamine enhancing levodopa for Parkinson’s disease can experience psychotic side effects mimicking the symptoms of schizophrenia. Up to 75% of patients with schizophrenia have increased signs and symptoms of their psychosis upon challenge with moderate doses of methylphenidate or amphetamine or other dopamine-like compounds, all given at doses at which control normal volunteers do not have any psychologically disturbing effects.

Some functional neuroimaging studies have also shown that, after taking amphetamine, patients diagnosed with schizophrenia show greater levels of dopamine release (particularly in the striatum) than non-psychotic individuals. However, the acute effects of dopamine stimulants include euphoria, alertness and over-confidence; these symptoms are more reminiscent of mania than schizophrenia. Since the 2000s, several PET studies have confirmed an altered synthesis capacity of dopamine in the nigrostriatal system demonstrating a dopaminergic dysregulation.

A group of drugs called the phenothiazines, including antipsychotics such as chlorpromazine, has been found to antagonise dopamine binding (particularly at receptors known as D2 dopamine receptors) and reduce positive psychotic symptoms. This observation was subsequently extended to other antipsychotic drug classes, such as butyrophenones including haloperidol. The link was strengthened by experiments in the 1970s which suggested that the binding affinity of antipsychotic drugs for D2 dopamine receptors seemed to be inversely proportional to their therapeutic dose. This correlation, suggesting that receptor binding is causally related to therapeutic potency, was reported by two laboratories in 1976.

People with Schizophrenia appear to have a high rate of self-medication with nicotine; the therapeutic effect likely occurs through dopamine modulation by nicotinic acetylcholine receptors.

However, there was controversy and conflicting findings over whether post-mortem findings resulted from drug tolerance to chronic antipsychotic treatment. Compared to the success of post-mortem studies in finding profound changes of dopamine receptors, imaging studies using SPECT and PET methods in drug naïve patients have generally failed to find any difference in dopamine D2 receptor density compared to controls. Comparable findings in longitudinal studies show: ” Particular emphasis is given to methodological limitations in the existing literature, including lack of reliability data, clinical heterogeneity among studies, and inadequate study designs and statistic,” suggestions are made for improving future longitudinal neuroimaging studies of treatment effects in schizophrenia A recent review of imaging studies in schizophrenia shows confidence in the techniques, while discussing such operator error. In 2007 one report said, “During the last decade, results of brain imaging studies by use of PET and SPECT in schizophrenic patients showed a clear dysregulation of the dopaminergic system.”

Recent findings from meta-analyses suggest that there may be a small elevation in dopamine D2 receptors in drug-free patients with schizophrenia, but the degree of overlap between patients and controls makes it unlikely that this is clinically meaningful. While the review by Laruelle acknowledged more sites were found using methylspiperone, it discussed the theoretical reasons behind such an increase (including the monomer-dimer equilibrium) and called for more work to be done to ‘characterise’ the differences. In addition, newer antipsychotic medication (called atypical antipsychotic medication) can be as potent as older medication (called typical antipsychotic medication) while also affecting serotonin function and having somewhat less of a dopamine blocking effect. In addition, dopamine pathway dysfunction has not been reliably shown to correlate with symptom onset or severity. HVA levels correlate trendwise to symptoms severity. During the application of debrisoquin, this correlation becomes significant.

Giving a more precise explanation of this discrepancy in D2 receptor has been attempted by a significant minority. Radioligand imaging measurements involve the monomer and dimer ratio, and the ‘cooperativity’ model. Cooperativitiy is a chemical function in the study of enzymes. Dopamine receptors interact with their own kind, or other receptors to form higher order receptors such as dimers, via the mechanism of cooperativity. Philip Seeman has said: “In schizophrenia, therefore, the density of [11C] methylspiperone sites rises, reflecting an increase in monomers, while the density of [11C] raclopride sites remains the same, indicating that the total population of D2 monomers and dimers does not change.” (In another place Seeman has said methylspiperone possibly binds with dimers) With this difference in measurement technique in mind, the above-mentioned meta-analysis uses results from 10 different ligands. Exaggerated ligand binding results such as SDZ GLC 756 (as used in the figure) were explained by reference to this monomer-dimer equilibrium.

According to Seeman, “…Numerous postmortem studies have consistently revealed D2 receptors to be elevated in the striata of patients with schizophrenia”. However, the authors were concerned the effect of medication may not have been fully accounted for. The study introduced an experiment by Anissa Abi-Dargham et al. (2000) in which it was shown medication-free live people with schizophrenia had more D2 receptors involved in the schizophrenic process and more dopamine. Since then another study has shown such elevated percentages in D2 receptors is brain-wide (using a different ligand, which did not need dopamine depletion). In a 2009 study, Abi-Dargham et al. confirmed the findings of her previous study regarding increased baseline D2 receptors in people with schizophrenia and showing a correlation between this magnitude and the result of amphetamine stimulation experiments.

Some animal models of psychosis are similar to those for addiction – displaying increased locomotor activity. For those female animals with previous sexual experience, amphetamine stimulation happens faster than for virgins. There is no study on male equivalent because the studies are meant to explain why females experience addiction earlier than males.

Even in 1986 the effect of antipsychotics on receptor measurement was controversial. An article in Science sought to clarify whether the increase was solely due to medication by using drug-naive people with schizophrenia: “The finding that D2 dopamine receptors are substantially increased in schizophrenic patients who have never been treated with neuroleptic drugs raises the possibility that dopamine receptors are involved in the schizophrenic disease process itself. Alternatively, the increased D2 receptor number may reflect presynaptic factors such as increased endogenous dopamine levels (16). In either case, our findings support the hypothesis that dopamine receptor abnormalities are present in untreated schizophrenic patients.” (The experiment used 3-N-[11C]methylspiperone – the same as mentioned by Seeman detects D2 monomers and binding was double that of controls.)

It is still thought that dopamine mesolimbic pathways may be hyperactive, resulting in hyperstimulation of D2 receptors and positive symptoms. There is also growing evidence that, conversely, mesocortical pathway dopamine projections to the prefrontal cortex might be hypoactive (underactive), resulting in hypostimulation of D1 receptors, which may be related to negative symptoms and cognitive impairment. The overactivity and underactivity in these different regions may be linked, and may not be due to a primary dysfunction of dopamine systems but to more general neurodevelopmental issues that precede them. Increased dopamine sensitivity may be a common final pathway. Gründer and Cumming assert that of those living with schizophrenia and other dopaminergic related illnesses, up to 25% of these patients may appear to have dopaminergic markers within the normal range.

Another finding is a six-fold excess of binding sites insensitive to the testing agent, raclopride; Seeman said this increase was probably due to the increase in D2 monomers. Such an increase in monomers may occur via the cooperativity mechanism which is responsible for D2High and D2Low, the supersensitive and lowsensitivity states of the D2 dopamine receptor. More specifically, “an increase in monomers, may be one basis for dopamine supersensitivity”.

Genetic and Other Biopsychosocial Risk Factors

Genetic evidence has suggested that there may be genes, or specific variants of genes, that code for mechanisms involved in dopamine function, which may be more prevalent in people experiencing psychosis or diagnosed with schizophrenia. Advanced technology has led to the possibility of performing Genome-Wide Association (GWA) studies. These studies identify frequently seen single nucleotide polymorphisms (SNP) that are associated with common, yet complex disorders. Genetic variants found due to GWA studies may offer insight concerning impairments in dopaminergic function. Dopamine-related genes linked to psychosis in this way include COMT, DRD4, and AKT1.

While genetics play an important role in the occurrence of schizophrenia, other biopsychosocial factors must also be taken into consideration. While focusing on the risk of schizophrenia in second generation migrants, Hennsler and colleagues relay that the dopamine hypothesis of schizophrenia may be an explanation. Some migrants who have had adverse experiences in their host country, such as racism, xenophobia, and poor living conditions, were found to have high stress levels, which increased dopaminergic neurotransmission. This increase in dopaminergic neurotransmission can be seen in the striatum and amygdala, both of which are areas in the brain that process aversive stimuli.

Evidence Against the Dopamine Hypothesis

Further experiments, conducted as new methods were developed (particularly the ability to use PET scanning to examine drug action in the brain of living patients) challenged the view that the amount of dopamine blocking was correlated with clinical benefit. These studies showed that some patients had over 90% of their D2 receptors blocked by antipsychotic drugs, but showed little reduction in their psychoses. This primarily occurs in patients who have had the psychosis for ten to thirty years. At least 90-95% of first-episode patients, however, respond to antipsychotics at low doses and do so with D2 occupancy of 60-70%. The antipsychotic aripiprazole occupies over 90% of D2 receptors, but this drug is both an agonist and an antagonist at D2 receptors.

Furthermore, although dopamine-inhibiting medications modify dopamine levels within minutes, the associated improvement in patient symptoms is usually not visible for at least several days, suggesting that dopamine may be indirectly responsible for the illness.

Similarly, the second generation of antipsychotic drugs – the atypical antipsychotics – were found to be just as effective as older typical antipsychotics in controlling psychosis, but more effective in controlling the negative symptoms, despite the fact that they have lower affinity for dopamine receptors than for various other neurotransmitter receptors. More recent work, however, has shown that atypical antipsychotic drugs such as clozapine and quetiapine bind and unbind rapidly and repeatedly to the dopamine D2 receptor. All of these drugs exhibit inverse agonistic effects at the 5-HT2A/2C receptors, meaning serotonin abnormalities are also involved in the complex constellation of neurologic factors predisposing one to the self reinforcing language-based psychological deficits found in all forms of psychosis.

The excitatory neurotransmitter glutamate is now also thought to be associated with schizophrenia. Phencyclidine (also known as PCP or “Angel Dust”) and ketamine, both of which block glutamate (NMDA) receptors, are known to cause psychosis at least somewhat resembling schizophrenia, further suggesting that psychosis and perhaps schizophrenia cannot fully be explained in terms of dopamine function, but may also involve other neurotransmitters.

Similarly, there is now evidence to suggest there may be a number of functional and structural anomalies in the brains of some people diagnosed with schizophrenia, such as changes in grey matter density in the frontal and temporal lobes. It appears, therefore, that there are multiple causes for psychosis and schizophrenia, including gene mutations and anatomical lesions. Many argue that other theories concerning the cause of schizophrenia may be more reliable in some cases, such as the glutamate hypothesis, GABA hypothesis, dysconnection hypothesis, and Bayesian inference hypothesis.

Psychiatrist David Healy has argued that drug companies have inappropriately promoted the dopamine hypothesis of schizophrenia as a deliberate and calculated simplification for the benefit of drug marketing.

Relationship with Glutamate

Research has shown the importance of glutamate receptors, specifically N-methyl-D-aspartate receptors (NMDARs), in addition to dopamine in the aetiology of schizophrenia. Abnormal NMDAR transmission may alter communication between cortical regions and the striatum. Mice with only 5% of the normal levels of NMDAR’s expressed schizophrenic-like behaviours seen in animal models of schizophrenia while mice with 100% of NMDAR’s behaved normally. Schizophrenic behaviour in low NMDAR mice has been effectively treated with antipsychotics that lower dopamine. NMDAR’s and dopamine receptors in the prefrontal cortex are associated with the cognitive impairments and working memory deficits commonly seen in schizophrenia. Rats that have been given a NMDAR antagonist exhibit a significant decrease in performance on cognitive tasks. Rats given a dopamine antagonist (antipsychotic) experience a reversal of the negative effects of the NMDAR antagonist. Glutamate imbalances appear to cause abnormal functioning in dopamine. When levels of glutamate are low dopamine is overactive and results in the expression schizophrenic symptoms.

Combined Networks of Dopamine, Serotonin, and Glutamate

Psychopharmacologist Stephen M. Stahl suggested in a review of 2018 that in many cases of psychosis, including schizophrenia, three interconnected networks based on dopamine, serotonin, and glutamate – each on its own or in various combinations – contributed to an overexcitation of dopamine D2 receptors in the ventral striatum.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Dopamine_hypothesis_of_schizophrenia >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is a Dopamine Receptor?

Introduction

Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS).

Dopamine receptors activate different effectors through not only G-protein coupling, but also signalling through different protein (dopamine receptor-interacting proteins) interactions. The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.

Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signalling. Abnormal dopamine receptor signalling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. Thus, dopamine receptors are common neurologic drug targets; antipsychotics are often dopamine receptor antagonists while psychostimulants are typically indirect agonists of dopamine receptors.

Subtypes

The existence of multiple types of receptors for dopamine was first proposed in 1976. There are at least five subtypes of dopamine receptors, D1, D2, D3, D4, and D5. The D1 and D5 receptors are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 receptors are members of the D2-like family. There is also some evidence that suggests the existence of possible D6 and D7 dopamine receptors, but such receptors have not been conclusively identified.

At a global level, D1 receptors have widespread expression throughout the brain. Furthermore, D1-2 receptor subtypes are found at 10–100 times the levels of the D3-5 subtypes.

D1-Like Family

The D1-like family receptors are coupled to the G protein G. D1 is also coupled to Golf.

Gsα subsequently activates adenylyl cyclase, increasing the intracellular concentration of the second messenger cyclic adenosine monophosphate (cAMP).

  • D1 is encoded by the Dopamine receptor D1 gene (DRD1).
  • D5 is encoded by the Dopamine receptor D5 gene (DRD5).

D2-Like Family

The D2-like family receptors are coupled to the G protein G, which directly inhibits the formation of cAMP by inhibiting the enzyme adenylyl cyclase.

  • D2 is encoded by the Dopamine receptor D2 gene (DRD2), of which there are two forms: D2Sh (short) and D2Lh (long):
    • The D2Sh form is pre-synaptically situated, having modulatory functions (viz., autoreceptors, which regulate neurotransmission via feedback mechanisms. It affects synthesis, storage, and release of dopamine into the synaptic cleft).
    • The D2Lh form may function as a classical post-synaptic receptor, i.e. transmit information (in either an excitatory or an inhibitory fashion) unless blocked by a receptor antagonist or a synthetic partial agonist.
  • D3 is encoded by the Dopamine receptor D3 gene (DRD3). Maximum expression of dopamine D3 receptors is noted in the islands of Calleja and nucleus accumbens.
  • D4 is encoded by the Dopamine receptor D4 gene (DRD4). The D4 receptor gene displays polymorphisms that differ in a variable number tandem repeat present within the coding sequence of exon 3. Some of these alleles are associated with greater incidence of certain disorders. For example, the D4.7 alleles have an established association with attention-deficit hyperactivity disorder.

Receptor Heteromers

Dopamine receptors have been shown to heteromerise with a number of other G protein-coupled receptors. Especially the D2 receptor is considered a major hub within the GPCR heteromer network. Protomers consist of:

  • Isoreceptors:
    • D1–D2
    • D1–D3
    • D2–D3
    • D2–D4
    • D2–D5
  • Non-isoreceptors:
    • D1–adenosine A1
    • D2–adenosine A2A
    • D2–ghrelin receptor
    • D2sh–TAAR1 (an autoreceptor heteromer)
    • D4–adrenoceptor α1B
    • D4–adrenoceptor β1

Signalling Mechanism

Dopamine receptor D1 and Dopamine receptor D5 are Gs coupled receptors that stimulate adenylyl cyclase to produce cAMP, which in turn increases intracellular calcium and mediates a number of other functions. The D2 class of receptors produce the opposite effect, as they are Gαi and/or Gαo coupled receptors, which blocks the activity of adenylyl cyclase. cAMP mediated protein kinase A activity also results in the phosphorylation of DARPP-32, an inhibitor of protein phosphatase 1. Sustained D1 receptor activity is kept in check by Cyclin-dependent kinase 5. Dopamine receptor activation of Ca2+/calmodulin-dependent protein kinase II can be cAMP dependent or independent.[18]

The cAMP mediated pathway results in amplification of PKA phosphorylation activity, which is normally kept in equilibrium by PP1. The DARPP-32 mediated PP1 inhibition amplifies PKA phosphorylation of AMPA, NMDA, and inward rectifying potassium channels, increasing AMPA and NMDA currents while decreasing potassium conductance.

cAMP Independent

D1 receptor agonism and D2 receptor blockade also increases mRNA translation by phosphorylating ribosomal protein s6, resulting in activation of mTOR. The behavioral implications are unknown. Dopamine receptors may also regulate ion channels and BDNF independent of cAMP, possibly through direct interactions. There is evidence that D1 receptor agonism regulates phospholipase C independent of cAMP, however implications and mechanisms remain poorly understood. D2 receptor signalling may mediate protein kinase B, arrestin beta 2, and GSK-3 activity, and inhibition of these proteins results in stunting of the hyperlocomotion in amphetamine treated rats. Dopamine receptors can also transactivate Receptor tyrosine kinases.

Beta Arrestin recruitment is mediated by G-protein kinases that phosphorylate and inactivate dopamine receptors after stimulation. While beta arrestin plays a role in receptor desensitisation, it may also be critical in mediating downstream effects of dopamine receptors. Beta arrestin has been shown to form complexes with MAP kinase, leading to activation of extracellular signal-regulated kinases. Furthermore, this pathway has been demonstrated to be involved in the locomotor response mediated by dopamine receptor D1. Dopamine receptor D2 stimulation results in the formation of an Akt/Beta-arrestin/PP2A protein complex that inhibits Akt through PP2A phosphorylation, therefore disinhibiting GSK-3.

Role in the Central Nervous System

Dopamine receptors control neural signalling that modulates many important behaviours, such as spatial working memory. Dopamine also plays an important role in the reward system, incentive salience, cognition, prolactin release, emesis and motor function.

Non-CNS Dopamine Receptors

Cardio-Pulmonary System

In humans, the pulmonary artery expresses D1, D2, D4, and D5 and receptor subtypes, which may account for vasodilatory effects of dopamine in the blood. Such receptor subtypes have also been discovered in the epicardium, myocardium, and endocardium of the heart. In rats, D1-like receptors are present on the smooth muscle of the blood vessels in most major organs.

D4 receptors have been identified in the atria of rat and human hearts. Dopamine increases myocardial contractility and cardiac output, without changing heart rate, by signalling through dopamine receptors.

Renal System

Dopamine receptors are present along the nephron in the kidney, with proximal tubule epithelial cells showing the highest density. In rats, D1-like receptors are present on the juxtaglomerular apparatus and on renal tubules, while D2-like receptors are present on the glomeruli, zona glomerulosa cells of the adrenal cortex, renal tubules, and postganglionic sympathetic nerve terminals. Dopamine signalling affects diuresis and natriuresis.

In Disease

Dysfunction of dopaminergic neurotransmission in the CNS has been implicated in a variety of neuropsychiatric disorders, including social phobia, Tourette’s syndrome, Parkinson’s disease, schizophrenia, neuroleptic malignant syndrome, attention-deficit hyperactivity disorder (ADHD), and drug and alcohol dependence.

Attention-Deficit Hyperactivity Disorder

Dopamine receptors have been recognised as important components in the mechanism of ADHD for many years. Drugs used to treat ADHD, including methylphenidate and amphetamine, have significant effects on neuronal dopamine signalling. Studies of gene association have implicated several genes within dopamine signalling pathways; in particular, the D4.7 variant of D4 has been consistently shown to be more frequent in ADHD patients. ADHD patients with the D4.7 allele also tend to have better cognitive performance and long-term outcomes compared to ADHD patients without the D4.7 allele, suggesting that the allele is associated with a more benign form of ADHD.

The D4.7 allele has suppressed gene expression compared to other variants.

Addictive Drugs

Dopamine is the primary neurotransmitter involved in the reward and reinforcement (mesolimbic) pathway in the brain. Although it was a long-held belief that dopamine was the cause of pleasurable sensations such as euphoria, many studies and experiments on the subject have demonstrated that this is not the case; rather, dopamine in the mesolimbic pathway is responsible for behaviour reinforcement (“wanting”) without producing any “liking” sensation on its own. Mesolimbic dopamine and its related receptors are a primary mechanism through which drug-seeking behaviour develops (Incentive Salience), and many recreational drugs, such as cocaine and substituted amphetamines, inhibit the dopamine transporter (DAT), the protein responsible for removing dopamine from the neural synapse. When DAT activity is blocked, the synapse floods with dopamine and increases dopaminergic signalling. When this occurs, particularly in the nucleus accumbens, increased D1 and decreased D2 receptor signalling mediates the “incentive salience” factor and can significantly increase positive associations with the drug in the brain.

Pathological Gambling

Pathological gambling is classified as a mental health disorder that has been linked to obsessive-compulsive spectrum disorder and behavioural addiction. Dopamine has been associated with reward and reinforcement in relation to behaviours and drug addiction. The role between dopamine and pathological gambling may be a link between cerebrospinal fluid measures of dopamine and dopamine metabolites in pathological gambling. Molecular genetic study shows that pathological gambling is associated with the TaqA1 allele of the Dopamine Receptor D2 (DRD2) dopamine receptor. Furthermore, TaqA1 allele is associated with other reward and reinforcement disorders, such as substance abuse and other psychiatric disorders. Reviews of these studies suggest that pathological gambling and dopamine are linked; however, the studies that succeed in controlling for race or ethnicity, and obtain DSM-IV diagnoses do not show a relationship between TaqA1 allelic frequencies and the diagnostic of pathological gambling.

Schizophrenia

Refer to Dopamine Hypothesis of Schizophrenia.

While there is evidence that the dopamine system is involved in schizophrenia, the theory that hyperactive dopaminergic signal transduction induces the disease is controversial. Psychostimulants, such as amphetamine and cocaine, indirectly increase dopamine signalling; large doses and prolonged use can induce symptoms that resemble schizophrenia. Additionally, many antipsychotic drugs target dopamine receptors, especially D2 receptors.

Genetic Hypertension

Dopamine receptor mutations can cause genetic hypertension in humans. This can occur in animal models and humans with defective dopamine receptor activity, particularly D1.

Parkinson’s Disease

Parkinson’s disease is associated with the loss of cells responsible for dopamine synthesis and other neurodegenerative events. Parkinson’s disease patients are treated with medications which help to replenish dopamine availability, allowing relatively normal brain function and neurotransmission. Research shows that Parkinson’s disease is linked to the class of dopamine agonists instead of specific agents. Reviews touch upon the need to control and regulate dopamine doses for Parkinson’s patients with a history of addiction, and those with variable tolerance or sensitivity to dopamine.

Dopamine Regulation

Refer to Yerkes–Dodson Law which is an empirical relationship between pressure and performance, originally developed by psychologists Robert M. Yerkes and John Dillingham Dodson in 1908. The law dictates that performance increases with physiological or mental arousal, but only up to a point. When levels of arousal become too high, performance decreases. The process is often illustrated graphically as a bell-shaped curve which increases and then decreases with higher levels of arousal. The original paper (a study of Japanese dancing mice) was only referenced ten times over the next half century, yet in four of the citing articles, these findings were described as a psychological “law”.

Dopamine receptors are typically stable, however sharp (and sometimes prolonged) increases or decreases in dopamine levels can downregulate (reduce the numbers of) or upregulate (increase the numbers of) dopamine receptors.

Haloperidol, and some other antipsychotics, have been shown to increase the binding capacity of the D2 receptor when used over long periods of time (i.e. increasing the number of such receptors). Haloperidol increased the number of binding sites by 98% above baseline in the worst cases, and yielded significant dyskinesia side effects.

Addictive stimuli have variable effects on dopamine receptors, depending on the particular stimulus. According to one study, cocaine, heroin, amphetamine, alcohol, and nicotine cause decreases in D2 receptor quantity. A similar association has been linked to food addiction (Park, 2007; Johnson & Kenny, 2010), with a low availability of dopamine receptors present in people with greater food intake. A 2008 news article summaried a US DOE Brookhaven National Laboratory study showing that increasing dopamine receptors with genetic therapy temporarily decreased cocaine consumption by up to 75%. The treatment was effective for 6 days. Cocaine upregulates D3 receptors in the nucleus accumbens, further reinforcing drug seeking behaviour.

Certain stimulants will enhance cognition in the general population (e.g. direct or indirect mesocortical DRD1 agonists as a class), but only when used at low (therapeutic) concentrations. Relatively high doses of dopaminergic stimulants will result in cognitive deficits.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Dopamine_receptor >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Dopamine Fasting?

Introduction

Dopamine fasting is a form of digital detox, involving temporarily abstaining from addictive technologies such as social media, listening to music on technological platforms, and Internet gaming, and can be extended to temporary deprivation of social interaction and eating. While the term’s origins are unknown; the concept was tackled seriously as a way to reduce impulsive behaviour in a guide as a CBT (Cognitive Behavioural Therapy) technique by Dr. Cameron Sepah.

The practice has been referred to as a “maladaptive fad” by one Harvard researcher. Other critics say that it is based on a misunderstanding of how the neurotransmitter dopamine, which operates within the brain to reward behaviour, actually works and can be altered by conscious behaviour. However, other scientists believe it is likely that both the practitioners and critics misunderstand the proposed technique, and rather the practice should be regarded as a self intervention for behavioural addiction. The idea behind it is to take a break from the repetitive patterns of excitement and stimulation that can be triggered by interaction with digital technology, and that the practice of avoiding pleasurable activities can work to undo bad habits, allow time for self-reflection, and bolster personal happiness.

Refer to Dopamine Receptor.

Definitions

The practice of dopamine fasting is not clearly defined in what it entails, on what technologies, with what frequency it should be done, or how it is supposed to work. Some proponents limit the process to avoiding online technology; others extend it to abstaining from all work, exercise, physical contact and unnecessary conversation.

According to Cameron Sepah, a proponent of the practice, the purpose is not to literally reduce dopamine in the body but rather to reduce impulsive behaviours that are rewarded by it. One account suggests that the practice is about avoiding cues, such as hearing the ring of a smartphone, that can trigger impulsive behaviours, such as remaining on the smartphone after the call to play a game. In one sense, dopamine fasting is a reaction to technology firms which have engineered their services to keep people hooked.

Dopamine fasting has been said to resemble the fasting tradition of many religions. An extreme form of dopamine fasting would be complete sensory deprivation, where all external stimuli are removed in order to promote a sense of calm and wellbeing.

Effects

Proponents of dopamine fasting argue that it is a way to exert greater self-control and self-discipline over one’s life, and New York Times technology journalist Nellie Bowles found that dopamine fasting made her subject’s everyday life “more exciting and fun”.

It has been described as a fad and a craze associated with Silicon Valley. An account in Vice, saying “If the idea of abstaining from anything fun in order to increase your mental clarity is appealing, congratulations: You and the notorious biohackers in Silicon Valley are on the same wave.”

Scientific Basis

Detractors say that the overall concept of dopamine fasting is unscientific since the chemical plays a vital role in everyday life; literally reducing it would not be good for a person, and removing a particular stimulus like social media would not reduce the levels of dopamine in the body, only the stimulation of it. Ciara McCabe, Associate Professor in Neuroscience at the University of Reading, considers the idea that the brain could be “reset” by avoiding dopamine triggers for a short time to be “nonsense”.

Cameron Sepah, who has promoted the practice of dopamine fasting, agrees that the name is misleading and says that its purpose is not to literally reduce dopamine in the body but rather to reduce the impulsive behaviours that are rewarded by it.

Besides the impulsive behaviour control – regulated by the prefrontal cortex, it has never been conclusively proven that technology use hardens the brain to dopamine’s effects. Technology use induces a dopamine response on par with any normal, enjoyable experience – roughly a 50% to 100% increase. By contrast, cocaine and methamphetamine – two highly addictive drugs – cause a dopamine spike of 350% and 1200% respectively. In addition, dopamine receptors themselves – the cells in the brain activated in different ways by dopamine’s release – respond differently to tech use than they do to substance abuse, with no evidence that they become less sensitive to dopamine with frequent tech use, in the way they do with substance abuse. In the final analysis, it is erroneous to assume that avoiding “dopamine spikes” may upregulate dopamine receptors, causing an “increase in motivation or pleasure”. Conversely, freeing oneself from bad habits may free up time for healthier habits, like physical activity, leading to actual increases in gray matter volume on multiple brain parts related to the reward system.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Dopamine_fasting >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.