What is Climazolam?

Introduction

Climazolam was introduced under licence as a veterinary medicine by the Swiss Pharmaceutical company Gräub under the tradename Climasol.

Background

Climazolam is a benzodiazepine, specifically an imidazobenzodiazepine derivative developed by Hoffman-LaRoche.

It is similar in structure to midazolam and diclazepam and is used in veterinary medicine for anaesthetising animals.

What is Midazolam?

Introduction

Midazolam, sold under the brand name Versed, among others, is a benzodiazepine medication used for anaesthesia, procedural sedation, trouble sleeping, and severe agitation.

It works by inducing sleepiness, decreasing anxiety, and causing a loss of ability to create new memories. It is important to note that this drug does not cause an individual to become unconscious, merely be sedated. It is also useful for the treatment of seizures. Midazolam can be given by mouth, intravenously, by injection into a muscle, by spraying into the nose, or through the cheek. When given intravenously, it typically begins working within five minutes; when injected into a muscle, it can take fifteen minutes to begin working. Effects last between one and six hours.

Side effects can include a decrease in efforts to breathe, low blood pressure, and sleepiness. Tolerance to its effects and withdrawal syndrome may occur following long-term use. Paradoxical effects, such as increased activity, can occur especially in children and older people. There is evidence of risk when used during pregnancy but no evidence of harm with a single dose during breastfeeding. It belongs to the benzodiazepine class of drugs and works by increasing the activity of the GABA neurotransmitter in the brain.

Midazolam was patented in 1974 and came into medical use in 1982. It is on the World Health Organisation’s List of Essential Medicines. Midazolam is available as a generic medication. In many countries, it is a controlled substance.

Brief History

Midazolam is among about 35 benzodiazepines currently used medically, and was synthesized in 1975 by Walser and Fryer at Hoffmann-LaRoche, Inc in the United States. Owing to its water solubility, it was found to be less likely to cause thrombophlebitis than similar drugs. The anticonvulsant properties of midazolam were studied in the late 1970s, but not until the 1990s did it emerge as an effective treatment for convulsive status epilepticus. As of 2010, it is the most commonly used benzodiazepine in anaesthetic medicine. In acute medicine, midazolam has become more popular than other benzodiazepines, such as lorazepam and diazepam, because it is shorter lasting, is more potent, and causes less pain at the injection site. Midazolam is also becoming increasingly popular in veterinary medicine due to its water solubility. In 2018 it was revealed the CIA considered using Midazolam as a “truth serum” on terrorist suspects in project “Medication”.

Medical Uses

Seizures

Midazolam is sometimes used for the acute management of seizures. Long-term use for the management of epilepsy is not recommended due to the significant risk of tolerance (which renders midazolam and other benzodiazepines ineffective) and the significant side effect of sedation. A benefit of midazolam is that in children it can be given in the cheek or in the nose for acute seizures, including status epilepticus. Midazolam is effective for status epilepticus that has not improved following other treatments or when intravenous access cannot be obtained, and has advantages of being water-soluble, having a rapid onset of action and not causing metabolic acidosis from the propylene glycol vehicle (which is not required due to its solubility in water), which occurs with other benzodiazepines.

Drawbacks include a high degree of breakthrough seizures – due to the short half-life of midazolam – in over 50% of people treated, as well as treatment failure in 14-18% of people with refractory status epilepticus. Tolerance develops rapidly to the anticonvulsant effect, and the dose may need to be increased by several times to maintain anticonvulsant therapeutic effects. With prolonged use, tolerance and tachyphylaxis can occur and the elimination half-life may increase, up to days. There is evidence buccal and intranasal midazolam is easier to administer and more effective than rectally administered diazepam in the emergency control of seizures.

Procedural Sedation

Intravenous midazolam is indicated for procedural sedation (often in combination with an opioid, such as fentanyl), for preoperative sedation, for the induction of general anaesthesia, and for sedation of people who are ventilated in critical care units. Midazolam is superior to diazepam in impairing memory of endoscopy procedures, but propofol has a quicker recovery time and a better memory-impairing effect. It is the most popular benzodiazepine in the intensive care unit (ICU) because of its short elimination half-life, combined with its water solubility and its suitability for continuous infusion. However, for long-term sedation, lorazepam is preferred due to its long duration of action, and propofol has advantages over midazolam when used in the ICU for sedation, such as shorter weaning time and earlier tracheal extubation.

Midazolam is sometimes used in neonatal intensive care units. When used, additional caution is required in newborns; midazolam should not be used for longer than 72 hours due to risks of tachyphylaxis, and the possibility of development of a benzodiazepine withdrawal syndrome, as well as neurological complications. Bolus injections should be avoided due to the increased risk of cardiovascular depression, as well as neurological complications. Midazolam is also sometimes used in newborns who are receiving mechanical ventilation, although morphine is preferred, owing to its better safety profile for this indication.

Sedation using midazolam can be used to relieve anxiety and manage behaviour in children undergoing dental treatment.

Agitation

Midazolam, in combination with an antipsychotic drug, is indicated for the acute management of schizophrenia when it is associated with aggressive or out-of-control behaviour.

End of Life Care

In the final stages of end-of-life care, midazolam is routinely used at low doses via subcutaneous injection to help with agitation, myoclonus, restlessness or anxiety in the last hours or days of life. At higher doses during the last weeks of life, midazolam is considered a first line agent in palliative continuous deep sedation therapy when it is necessary to alleviate intolerable suffering not responsive to other treatments, but the need for this is rare.

Administration

Routes of administration of midazolam can be oral, intranasal, buccal, intravenous, and intramuscular.

  • Dosing:
    • Perioperative use: 0.15 to 0.40 mg/kg IV.
    • Premedication: 0.07 to 0.10 mg/kg IM.
    • Intravenous sedation: 0.05 to 0.15 mg/kg IV.

Contraindications

Benzodiazepines require special precaution if used in the elderly, during pregnancy, in children, in alcohol- or other drug-dependent individuals or those with comorbid psychiatric disorders. Additional caution is required in critically ill patients, as accumulation of midazolam and its active metabolites may occur. Kidney or liver impairments may slow down the elimination of midazolam leading to prolonged and enhanced effects. Contraindications include hypersensitivity, acute narrow-angle glaucoma, shock, hypotension, or head injury. Most are relative contraindications.

Side Effects

Refer to Long-Term Effects of Benzodiazepines.

Side effects of midazolam in the elderly are listed above. People experiencing amnesia as a side effect of midazolam are generally unaware their memory is impaired, unless they had previously known it as a side effect.

Long-term use of benzodiazepines has been associated with long-lasting deficits of memory, and show only partial recovery six months after stopping benzodiazepines. It is unclear whether full recovery occurs after longer periods of abstinence. Benzodiazepines can cause or worsen depression. Paradoxical excitement occasionally occurs with benzodiazepines, including a worsening of seizures. Children and elderly individuals or those with a history of excessive alcohol use and individuals with a history of aggressive behaviour or anger are at increased risk of paradoxical effects. Paradoxical reactions are particularly associated with intravenous administration. After night-time administration of midazolam, residual ‘hangover’ effects, such as sleepiness and impaired psychomotor and cognitive functions, may persist into the next day. This may impair the ability of users to drive safely and may increase the risk of falls and hip fractures. Sedation, respiratory depression and hypotension due to a reduction in systematic vascular resistance, and an increase in heart rate can occur. If intravenous midazolam is given too quickly, hypotension may occur. A “midazolam infusion syndrome” may result from high doses, and is characterised by delayed arousal hours to days after discontinuation of midazolam, and may lead to an increase in the length of ventilatory support needed.

In susceptible individuals, midazolam has been known to cause a paradoxical reaction, a well-documented complication with benzodiazepines. When this occurs, the individual may experience anxiety, involuntary movements, aggressive or violent behaviour, uncontrollable crying or verbalization, and other similar effects. This seems to be related to the altered state of consciousness or disinhibition produced by the drug. Paradoxical behaviour is often not recalled by the patient due to the amnesia-producing properties of the drug. In extreme situations, flumazenil can be administered to inhibit or reverse the effects of midazolam. Antipsychotic medications, such as haloperidol, have also been used for this purpose.

Midazolam is known to cause respiratory depression. In healthy humans, 0.15 mg/kg of midazolam may cause respiratory depression, which is postulated to be a central nervous system (CNS) effect. When midazolam is administered in combination with fentanyl, the incidence of hypoxemia or apnoea becomes more likely.

Although the incidence of respiratory depression/arrest is low (0.1-0.5%) when midazolam is administered alone at normal doses, the concomitant use with CNS acting drugs, mainly analgesic opiates, may increase the possibility of hypotension, respiratory depression, respiratory arrest, and death, even at therapeutic doses. Potential drug interactions involving at least one CNS depressant were observed for 84% of midazolam users who were subsequently required to receive the benzodiazepine antagonist flumazenil. Therefore, efforts directed toward monitoring drug interactions and preventing injuries from midazolam administration are expected to have a substantial impact on the safe use of this drug.

Pregnancy and Breastfeeding

Midazolam, when taken during the third trimester of pregnancy, may cause risk to the neonate, including benzodiazepine withdrawal syndrome, with possible symptoms including hypotonia, apnoeic spells, cyanosis, and impaired metabolic responses to cold stress. Symptoms of hypotonia and the neonatal benzodiazepine withdrawal syndrome have been reported to persist from hours to months after birth. Other neonatal withdrawal symptoms include hyperexcitability, tremor, and gastrointestinal upset (diarrhoea or vomiting). Breastfeeding by mothers using midazolam is not recommended.

Elderly

Additional caution is required in the elderly, as they are more sensitive to the pharmacological effects of benzodiazepines, metabolise them more slowly, and are more prone to adverse effects, including drowsiness, amnesia (especially anterograde amnesia), ataxia, hangover effects, confusion, and falls.

Tolerance, Dependence, and Withdrawal

A benzodiazepine dependence occurs in about one-third of individuals who are treated with benzodiazepines for longer than 4 weeks, which typically results in tolerance and benzodiazepine withdrawal syndrome when the dose is reduced too rapidly. Midazolam infusions may induce tolerance and a withdrawal syndrome in a matter of days. The risk factors for dependence include dependent personality, use of a benzodiazepine that is short-acting, high potency and long-term use of benzodiazepines. Withdrawal symptoms from midazolam can range from insomnia and anxiety to seizures and psychosis. Withdrawal symptoms can sometimes resemble a person’s underlying condition. Gradual reduction of midazolam after regular use can minimise withdrawal and rebound effects. Tolerance and the resultant withdrawal syndrome may be due to receptor down-regulation and GABAA receptor alterations in gene expression, which causes long-term changes in the function of the GABAergic neuronal system.

Chronic users of benzodiazepine medication who are given midazolam experience reduced therapeutic effects of midazolam, due to tolerance to benzodiazepines. Prolonged infusions with midazolam results in the development of tolerance; if midazolam is given for a few days or more a withdrawal syndrome can occur. Therefore, preventing a withdrawal syndrome requires that a prolonged infusion be gradually withdrawn, and sometimes, continued tapering of dose with an oral long-acting benzodiazepine such as clorazepate dipotassium. When signs of tolerance to midazolam occur during intensive care unit sedation the addition of an opioid or propofol is recommended. Withdrawal symptoms can include irritability, abnormal reflexes, tremors, clonus, hypertonicity, delirium and seizures, nausea, vomiting, diarrhoea, tachycardia, hypertension, and tachypnoea. In those with significant dependence, sudden discontinuation may result in withdrawal symptoms such as status epilepticus that may be fatal.

Overdose

Refer to Benzodiazepine Overdose.

A midazolam overdose is considered a medical emergency and generally requires the immediate attention of medical personnel. Benzodiazepine overdose in healthy individuals is rarely life-threatening with proper medical support; however, the toxicity of benzodiazepines increases when they are combined with other CNS depressants such as alcohol, opioids, or tricyclic antidepressants. The toxicity of benzodiazepine overdose and risk of death is also increased in the elderly and those with obstructive pulmonary disease or when used intravenously. Treatment is supportive; activated charcoal can be used within an hour of the overdose. The antidote for an overdose of midazolam (or any other benzodiazepine) is flumazenil. While effective in reversing the effects of benzodiazepines it is not used in most cases as it may trigger seizures in mixed overdoses and benzodiazepine dependent individuals.

Symptoms of midazolam overdose can include:

  • Ataxia.
  • Dysarthria.
  • Nystagmus.
  • Slurred speech.
  • Somnolence (difficulty staying awake).
  • Mental confusion.
  • Hypotension.
  • Respiratory arrest.
  • Vasomotor collapse.
  • Impaired motor functions:
    • Impaired reflexes.
    • Impaired coordination.
    • Impaired balance.
    • Dizziness.
  • Coma.
  • Death.

Detection in Body Fluids

Concentrations of midazolam or its major metabolite, 1-hydroxymidazolam glucuronide, may be measured in plasma, serum, or whole blood to monitor for safety in those receiving the drug therapeutically, to confirm a diagnosis of poisoning in hospitalised patients, or to assist in a forensic investigation of a case of fatal overdosage. Patients with renal dysfunction may exhibit prolongation of elimination half-life for both the parent drug and its active metabolite, with accumulation of these two substances in the bloodstream and the appearance of adverse depressant effects.

Interactions

Protease inhibitors, nefazodone, sertraline, grapefruit, fluoxetine, erythromycin, diltiazem, clarithromycin inhibit the metabolism of midazolam, leading to a prolonged action. St John’s wort, rifapentine, rifampin, rifabutin, phenytoin enhance the metabolism of midazolam leading to a reduced action. Sedating antidepressants, antiepileptic drugs such as phenobarbital, phenytoin and carbamazepine, sedative antihistamines, opioids, antipsychotics and alcohol enhance the sedative effects of midazolam. Midazolam is metabolised almost completely by cytochrome P450-3A4. Atorvastatin administration along with midazolam results in a reduced elimination rate of midazolam. St John’s wort decreases the blood levels of midazolam. Grapefruit juice reduces intestinal 3A4 and results in less metabolism and higher plasma concentrations.

Pharmacology

Midazolam is a short-acting benzodiazepine in adults with an elimination half-life of 1.5-2.5 hours. In the elderly, as well as young children and adolescents, the elimination half-life is longer. Midazolam is metabolised into an active metabolite alpha1-hydroxymidazolam. Age-related deficits, renal and liver status affect the pharmacokinetic factors of midazolam as well as its active metabolite. However, the active metabolite of midazolam is minor and contributes to only 10 percent of biological activity of midazolam. Midazolam is poorly absorbed orally, with only 50% of the drug reaching the bloodstream. Midazolam is metabolised by cytochrome P450 (CYP) enzymes and by glucuronide conjugation. The therapeutic as well as adverse effects of midazolam are due to its effects on the GABAA receptors; midazolam does not activate GABAA receptors directly but, as with other benzodiazepines, it enhances the effect of the neurotransmitter GABA on the GABAA receptors (↑ frequency of Cl- channel opening) resulting in neural inhibition. Almost all of the properties can be explained by the actions of benzodiazepines on GABAA receptors. This results in the following pharmacological properties being produced: sedation, induction of sleep, reduction in anxiety, anterograde amnesia, muscle relaxation and anticonvulsant effects.

Pharmacokinetics

  • Volume of Distribution: 1-2.5L/kg in normal healthy individuals.
  • Protein Binding: 96% Plasma protein bound.
  • Onset of Action: 3-15 minutes.
  • Elimination Half-Life: 1.5-3 hours.

Society and Culture

Cost

Midazolam is available as a generic medication.

Availability

Midazolam is available in the United States as a syrup or as an injectable solution.

Dormicum brand midazolam is marketed by Roche as white, oval, 7.5-mg tablets in boxes of two or three blister strips of 10 tablets, and as blue, oval, 15-mg tablets in boxes of two (Dormonid 3x) blister strips of 10 tablets. The tablets are imprinted with “Roche” on one side and the dose of the tablet on the other side. Dormicum is also available as 1-, 3-, and 10-ml ampoules at a concentration of 5 mg/ml. Another manufacturer, Novell Pharmaceutical Laboratories, makes it available as Miloz in 3- and 5-ml ampoules. Midazolam is the only water-soluble benzodiazepine available. Another maker is Roxane Laboratories; the product in an oral solution, Midazolam HCl Syrup, 2 mg/ml clear, in a red to purplish-red syrup, cherry in flavour. It becomes soluble when the injectable solution is buffered to a pH of 2.9-3.7. Midazolam is also available in liquid form. It can be administered intramuscularly, intravenously, intrathecally, intranasally, buccally, or orally.

Legal Status

In the Netherlands, midazolam is a List II drug of the Opium Law. Midazolam is a Schedule IV drug under the Convention on Psychotropic Substances. In the United Kingdom, midazolam is a Schedule 3/Class C controlled drug. In the United States, midazolam (DEA number 2884) is on the Schedule IV list of the Controlled Substances Act as a non-narcotic agent with low potential for abuse.

Marketing Authorisation

In 2011, the European Medicines Agency (EMA) granted a marketing authorisation for a buccal application form of midazolam, sold under the trade name Buccolam. Buccolam was approved for the treatment of prolonged, acute, convulsive seizures in people from three months to less than 18 years of age. This was the first application of a paediatric-use marketing authorisation.

Use in Executions

The drug has been introduced for use in executions by lethal injection in certain jurisdictions in the United States in combination with other drugs. It was introduced to replace pentobarbital after the latter’s manufacturer disallowed that drug’s use for executions. Midazolam acts as a sedative but will fail to render the condemned prisoner unconscious, at which time vecuronium bromide and potassium chloride are administered, stopping the prisoner’s breathing and heart, respectively. Due to the fact that the condemned prisoner is not unconscious but merely sedated, two very different things, those following two drugs can cause extreme pain and panic in the soon to die prisoner.

Midazolam has been used as part of a three-drug cocktail, with vecuronium bromide and potassium chloride in Florida and Oklahoma prisons. Midazolam has also been used along with hydromorphone in a two-drug protocol in Ohio and Arizona.

The usage of midazolam in executions became controversial after condemned inmate Clayton Lockett apparently regained consciousness and started speaking midway through his 2014 execution when the state of Oklahoma attempted to execute him with an untested three-drug lethal injection combination using 100 mg of midazolam. Prison officials reportedly discussed taking him to a hospital before he was pronounced dead of a heart attack 40 minutes after the execution began. An observing doctor stated that Lockett’s vein had ruptured. It is not clear whether his death was caused by one or more of the drugs or to a problem in the administration procedure, nor is it clear what quantities of vecuronium bromide and potassium chloride were released to his system before the execution was cancelled.

Notable Incidents

The state of Florida used midazolam to execute William Frederick Happ in October 2013.

The state of Ohio used midazolam in the execution of Dennis McGuire in January 2014; it took McGuire 24 minutes to die after the procedure started, and he gasped and appeared to be choking during that time, leading to questions about the dosing and timing of the drug administration, as well as the choice of drugs.

The execution of Ronald Bert Smith in the state of Alabama on 08 December 2016, “went awry soon after (midazolam) was administered” again putting the effectiveness of the drug in question.

In October 2016, the state of Ohio announced that it would resume executions in January 2017, using a formulation of midazolam, vecuronium bromide, and potassium chloride, but this was blocked by a Federal judge. On 26 July 2017, Ronald Phillips was executed with a three-drug cocktail including midazolam after the Supreme Court refused to grant a stay. Prior to this, the last execution in Ohio had been that of Dennis McGuire. Murderer Gary Otte’s lawyers unsuccessfully challenged his Ohio execution, arguing that midazolam might not protect him from serious pain when the other drugs are administered. He died without incident in about 14 minutes on 13 September 2017.

On 24 April 2017, the state of Arkansas carried out a double-execution of Jack Harold Jones, 52, and Marcel Williams, 46. The state of Arkansas attempted to execute eight people before its supply of midazolam expired on 30 April 2017. Two of them were granted a stay of execution, and another, Ledell T. Lee, 51, was executed on 20 April 2017.

On 28 October 2021, the state of Oklahoma carried out the execution of inmate John Marion Grant, 60, using midazolam as part of its three-drug cocktail hours after the US Supreme Court ruled to lift a stay of execution for Oklahoma death row inmates. The execution was the state’s first since 2015. Witnesses to the execution said that when the first drug, midazolam, began to flow at 4:09 pm, Grant started convulsing about two dozen times and vomited. Grant continued breathing, and a member of the execution team wiped the vomit off his face. At 4:15 pm., officials said Grant was unconscious, and he was pronounced dead at 4:21 pm.

Legal Challenges

In Glossip v. Gross, attorneys for three Oklahoma inmates argued that midazolam could not achieve the level of unconsciousness required for surgery, meaning severe pain and suffering was likely. They argued that midazolam was cruel and unusual punishment and thus contrary to the Eighth Amendment to the United States Constitution. In June 2015, the US Supreme Court ruled that they had failed to prove that midazolam was cruel and unusual when compared to known, available alternatives.

The state of Nevada is also known to use midazolam in execution procedures. In July 2018, one of the manufacturers accused state officials of obtaining the medication under false pretences. This incident was the first time a drug company successfully, though temporarily, halted an execution. A previous attempt in 2017, to halt an execution in the state of Arizona by another drug manufacturer was not successful.

This page is based on the copyrighted Wikipedia article <https://en.wikipedia.org/wiki/Midazolam&gt;; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Amisulpride?

Introduction

Amisulpride is an antiemetic and antipsychotic medication used at lower doses intravenously to prevent and treat postoperative nausea and vomiting; and at higher doses by mouth to treat schizophrenia and acute psychotic episodes.

It is sold under the brand names Barhemsys (as an antiemetic) and Solian, Socian, Deniban and others (as an antipsychotic). It is also used to treat dysthymia.

It is usually classed with the atypical antipsychotics. Chemically it is a benzamide and like other benzamide antipsychotics, such as sulpiride, it is associated with a high risk of elevating blood levels of the lactation hormone, prolactin (thereby potentially causing the absence of the menstrual cycle, breast enlargement, even in males, breast milk secretion not related to breastfeeding, impaired fertility, impotence, breast pain, etc.), and a low risk, relative to the typical antipsychotics, of causing movement disorders.

Amisulpride is indicated for use in the US in adults for the prevention of postoperative nausea and vomiting (PONV), either alone or in combination with an antiemetic of a different class; and to treat PONV in those who have received antiemetic prophylaxis with an agent of a different class or have not received prophylaxis.

Amisulpride is believed to work by blocking, or antagonising, the dopamine D2 receptor, reducing its signalling. The effectiveness of amisulpride in treating dysthymia and the negative symptoms of schizophrenia is believed to stem from its blockade of the presynaptic dopamine D2 receptors. These presynaptic receptors regulate the release of dopamine into the synapse, so by blocking them amisulpride increases dopamine concentrations in the synapse. This increased dopamine concentration is theorised to act on dopamine D1 receptors to relieve depressive symptoms (in dysthymia) and the negative symptoms of schizophrenia.

It was introduced by Sanofi-Aventis in the 1990s. Its patent expired by 2008, and generic formulations became available. It is marketed in all English-speaking countries except for Canada. A New York City based company, LB Pharmaceuticals, has announced the ongoing development of LB-102, also known as N-methyl amisulpride, an antipsychotic specifically targeting the United States. A poster presentation at European Neuropsychopharmacology seems to suggest that this version of amisulpride, known as LB-102 displays the same binding to D2, D3 and 5HT7 that amisulpride does.

Brief History

The US Food and Drug Administration (FDA) approved amisulpride based on evidence from four clinical trials of 2323 subjects undergoing surgery or experiencing nausea and vomiting after the surgery. The trials were conducted at 80 sites in the United States, Canada and Europe.

Two trials (Trials 1 and 2) enrolled subjects scheduled to have surgery. Subjects were randomly assigned to receive either amisulpride or a placebo drug at the beginning of general anaesthesia. In Trial 1, subjects received amisulpride or placebo alone, and in Trial 2, they received amisulpride or placebo in combination with one medication approved for prevention of nausea and vomiting. Neither the subjects nor the health care providers knew which treatment was being given until after the trial was complete.

The trials counted the number of subjects who had no vomiting and did not use additional medications for nausea or vomiting in the first day (24 hours) after the surgery. The results then compared amisulpride to placebo.

The other two trials (Trials 3 and 4) enrolled subjects who were experiencing nausea and vomiting after surgery. In Trial 3, subjects did not receive any medication to prevent nausea and vomiting before surgery and in Trial 4 they received the medication, but the treatment did not work. In both trials, subjects were randomly assigned to receive either amisulpride or placebo. Neither the subjects nor the health care providers knew which treatment was being given until after the trial was complete.

The trials counted the number of subjects who had no vomiting and did not use additional medications for nausea or vomiting in the first day (24 hours) after the treatment. The trial compared amisulpride to placebo.

Medical Uses

Schizophrenia

Although according to other studies it appears to have comparable efficacy to olanzapine in the treatment of schizophrenia. Amisulpride augmentation, similarly to sulpiride augmentation, has been considered a viable treatment option (although this is based on low-quality evidence) in clozapine-resistant cases of schizophrenia. Another recent study concluded that amisulpride is an appropriate first-line treatment for the management of acute psychosis.

Postoperative Nausea and Vomiting

Amisulpride is indicated for use in the United States in adults for the prevention of postoperative nausea and vomiting (PONV), either alone or in combination with an antiemetic of a different class; and to treat PONV in those who have received antiemetic prophylaxis with an agent of a different class or have not received prophylaxis.

Contraindications

Amisulpride’s use is contraindicated in the following disease states:

  • Pheochromocytoma.
  • Concomitant prolactin-dependent tumours e.g. prolactinoma, breast cancer.
  • Movement disorders (e.g. Parkinson’s disease and dementia with Lewy bodies).
  • Lactation.
  • Children before the onset of puberty.

Neither is it recommended to use amisulpride in patients with hypersensitivities to amisulpride or the excipients found in its dosage form.

Adverse Effects

  • Very Common (≥10% incidence):
    • Extrapyramidal side effects (EPS; including dystonia, tremor, akathisia, parkinsonism).
  • Common (≥1%, <10% incidence):
    • Insomnia.
    • Hypersalivation.
    • Nausea.
    • Headache.
    • Hyperactivity.
    • Vomiting.
    • Hyperprolactinaemia (which can lead to galactorrhoea, breast enlargement and tenderness, sexual dysfunction, etc.).
    • Weight gain (produces less weight gain than chlorpromazine, clozapine, iloperidone, olanzapine, paliperidone, quetiapine, risperidone, sertindole, zotepine and more (although not statistically significantly) weight gain than haloperidol, lurasidone, ziprasidone and approximately as much weight gain as aripiprazole and asenapine).
    • Anticholinergic side effects (although it does not bind to the muscarinic acetylcholine receptors and hence these side effects are usually quite mild) such as
      • Constipation.
      • Dry mouth.
      • Disorder of accommodation.
      • Blurred vision.
  • Rare (<1% incidence):
    • Hyponatraemia.
    • Bradycardia.
    • Hypotension.
    • Palpitations.
    • Urticaria.
    • Seizures.
    • Mania.
    • Oculogyric crisis.
    • Tardive dyskinesia.
    • Blood dyscrasias such as leucopenia, neutropenia and agranulocytosis.
    • QT interval prolongation (in a recent meta-analysis of the safety and efficacy of 15 antipsychotic drugs amisulpride was found to have the 2nd highest effect size for causing QT interval prolongation).
    • Somnolence.

Hyperprolactinaemia results from antagonism of the D2 receptors located on the lactotrophic cells found in the anterior pituitary gland. Amisulpride has a high propensity for elevating plasma prolactin levels as a result of its poor blood-brain barrier penetrability and hence the resulting greater ratio of peripheral D2 occupancy to central D2 occupancy. This means that to achieve the sufficient occupancy (~60–80%) of the central D2 receptors in order to elicit its therapeutic effects a dose must be given that is enough to saturate peripheral D2 receptors including those in the anterior pituitary.

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.

Overdose

Torsades de pointes is common in overdose. Amisulpride is moderately dangerous in overdose (with the TCAs being very dangerous and the SSRIs being modestly dangerous).

Interactions

Amisulpride should not be used in conjunction with drugs that prolong the QT interval (such as citalopram, bupropion, clozapine, tricyclic antidepressants, sertindole, ziprasidone, etc.), reduce heart rate and those that can induce hypokalaemia. Likewise it is imprudent to combine antipsychotics due to the additive risk for tardive dyskinesia and neuroleptic malignant syndrome.

Pharmacology

Pharmacodynamics

Amisulpride functions primarily as a dopamine D2 and D3 receptor antagonist. It has high affinity for these receptors with dissociation constants of 3.0 and 3.5 nM, respectively. Although standard doses used to treat psychosis inhibit dopaminergic neurotransmission, low doses preferentially block inhibitory presynaptic autoreceptors. This results in a facilitation of dopamine activity, and for this reason, low-dose amisulpride has also been used to treat dysthymia.

Amisulpride and its relatives sulpiride, levosulpiride, and sultopride have been shown to bind to the high-affinity GHB receptor at concentrations that are therapeutically relevant (IC50 = 50 nM for amisulpride).

Amisulpride, sultopride and sulpiride respectively present decreasing in vitro affinities for the D2 receptor (IC50 = 27, 120 and 181 nM) and the D3 receptor (IC50 = 3.6, 4.8 and 17.5 nM).

Though it was long widely assumed that dopaminergic modulation is solely responsible for the respective antidepressant and antipsychotic properties of amisulpride, it was subsequently found that the drug also acts as a potent antagonist of the serotonin 5-HT7 receptor (Ki = 11.5 nM). Several of the other atypical antipsychotics such as risperidone and ziprasidone are potent antagonists at the 5-HT7 receptor as well, and selective antagonists of the receptor show antidepressant properties themselves. To characterise the role of the 5-HT7 receptor in the antidepressant effects of amisulpride, a study prepared 5-HT7 receptor knockout mice. The study found that in two widely used rodent models of depression, the tail suspension test, and the forced swim test, those mice did not exhibit an antidepressant response upon treatment with amisulpride. These results suggest that 5-HT7 receptor antagonism mediates the antidepressant effects of amisulpride.

Amisulpride also appears to bind with high affinity to the serotonin 5-HT2B receptor (Ki = 13 nM), where it acts as an antagonist. The clinical implications of this, if any, are unclear. In any case, there is no evidence that this action mediates any of the therapeutic effects of amisulpride.

Amisulpride shows stereoselectivity in its actions. Aramisulpride ((R)-amisulpride) has higher affinity for the 5-HT7 receptor (Ki = 47 nM vs. 1,900 nM) while esamisulpride ((S)-amisulpride) has higher affinity for the D2 receptor (4.0 nM vs. 140 nM). An 85:15 ratio of aramisulpride to esamisulpride (SEP-4199) which provides more balanced 5-HT7 and D2 receptor antagonism than racemic amisulpride (50:50 ratio of enantiomers) is under development for the treatment of bipolar depression.

Society and Culture

Brand Names

Brand names include: Amazeo, Amipride (AU), Amival, Solian (AU, IE, RU, UK, ZA), Soltus, Sulpitac (IN), Sulprix (AU), Midora (RO) and Socian (BR).

Availability

Amisulpride was not approved by the Food and Drug Administration for use in the United States until February 2020, but it is used in Europe, Israel, Mexico, India, New Zealand and Australia to treat psychosis and schizophrenia.

An IV formulation of Amisulpride was approved for the treatment of postoperative nausea and vomiting (“PONV”) in the United States in February 2020.

This page is based on the copyrighted Wikipedia article <https://en.wikipedia.org/wiki/Amisulpride&gt;; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Amineptine?

Introduction

Amineptine, formerly sold under the brand name Survector among others, is an atypical antidepressant of the tricyclic antidepressant (TCA) family.

It acts as a selective and mixed dopamine reuptake inhibitor and releasing agent, and to a lesser extent as a norepinephrine reuptake inhibitor.

Amineptine was developed by the French Society of Medical research in the 1960s. Introduced in France in 1978 by the pharmaceutical company Servier, amineptine soon gained a reputation for abuse due to its short-lived, but pleasant, stimulant effect experienced by some patients.

After its release into the European market, cases of hepatotoxicity emerged, some serious. This, along with the potential for abuse, led to the suspension of the French marketing authorization for Survector in 1999.

Amineptine was never approved by the US Food and Drug Administration (FDA) for marketing in the US, meaning that it is not legal to market or sell amineptine for any medical uses in the US.

Medical Uses

Amineptine was approved in France for severe clinical depression of endogenous origin in 1978.

Contraindications

  • Chorea
  • Hypersensitivity: Known hypersensitivity to amineptine, in particular antecedents of hepatitis after dosage of the product.
  • MAO inhibitors.

Precautions for Use

Warnings and precautions before taking amineptine:

  • Breast feeding.
  • Children less than 15-year of age.
  • General anaesthesia: Discontinue the drug 24 to 48 hours before anaesthesia.
  • Official sports/Olympic Games: Prohibited substance.
  • Pregnancy (first trimester).

Effects on the Foetus

  • Lacking information in humans.
  • Non-teratogenic in rodents.

Side Effects

Dermatological

Severe acne due to amineptine was first reported in 1988 by various authors – Grupper, Thioly-Bensoussan, Vexiau, Fiet, Puissant, Gourmel, Teillac, Levigne, to name a few – simultaneously in the same issue of Annales de dermatologie et de vénéréologie and in the 12 March 1988 issue of The Lancet. A year later, Dr Martin-Ortega and colleagues in Barcelona, Spain reported a case of “acneiform eruption” in a 54-year-old woman whose intake of amineptine was described as “excessive.” One year after that, Vexiau and colleagues reported six women, one of whom never admitted to using amineptine, getting severe acne concentrated in the face, back and thorax, the severity of which varied with the dosage. Most of them were treated unsuccessfully with isotretinoin (Accutane) for about 18 months; two of the three that discontinued amineptine experienced a reduction in cutaneous symptoms, with the least affected patient going into remission.

Psychiatric

Psychomotor excitation can very rarely occur with this drug.

  • Insomnia.
  • Irritability.
  • Nervousness.
  • Suicidal ideation. Seen early in the treatment, by lifting of psychomotor inhibition.

Abuse and Dependence

The risk of addiction is low, but exists nonetheless. Between 1978 and 1988, there were 186 cases of amineptine addiction reported to the French Regional Centres of Pharmacovigilance; an analysis of 155 of those cases found that they were predominantly female, and that two-thirds of cases had known risk factors for addiction. However, a 1981 study of known opiate addicts and schizophrenia patients found no drug addiction in any of the subjects. In a 1990 study of eight amineptine dependence cases, the gradual withdrawal of amineptine could be achieved without problems in six people; in two others, anxiety, psychomotor agitation, and/or bulimia appeared.

Withdrawal

Pharmacodependence is very common with amineptine compared to other antidepressants. A variety of psychological symptoms can occur during withdrawal from amineptine, such as anxiety and agitation.

Cardiovascular

Very rarely:

  • Arterial hypotension.
  • Palpitations.
  • Vasomotor episode.

Hepatic

Amineptine can rarely cause hepatitis, of the cytolytic, cholestatic varieties. Amineptine-induced hepatitis, which is sometimes preceded by a rash, is believed to be due to an immunoallergic reaction. It resolves upon discontinuation of the offending drug. The risk of getting this may or may not be genetically determined.

Additionally, amineptine is known to rarely elevate transaminases, alkaline phosphatase, and bilirubin.

Mixed hepatitis, which is very rare, generally occurs between the 15th and 30th day of treatment. Often preceded by sometimes intense abdominal pains, nausea, vomiting or a rash, the jaundice is variable. Hepatitis is either of mixed type or with cholestatic prevalence. The evolution was, in all the cases, favourable to the discontinuation of the drug. The mechanism is discussed (immunoallergic and/or toxic).

In circa 1994 Spain, there was a case associating acute pancreatitis and mixed hepatitis, after three weeks of treatment.

Lazaros and colleagues at the Western Attica General Hospital in Athens, Greece reported two cases of drug induced hepatitis 18 and 15 days of treatment.

One case of cytolytic hepatitis occurred after ingestion of only one tablet.

Gastrointestinal

Acute pancreatitis (very rare) A case associating acute pancreatitis and mixed hepatitis after three weeks of treatment.

Immunological

In 1989, Sgro and colleagues at the Centre de Pharmacovigilance in Dijon reported a case of anaphylactic shock in a woman who had been taking amineptine.

Pharmacology

Pharmacodynamics

Amineptine inhibits the reuptake of dopamine and, to a much lesser extent, of norepinephrine. In addition, it has been found to induce the release of dopamine. However, amineptine is much less efficacious as a dopamine releasing agent relative to D-amphetamine, and the drug appears to act predominantly as a dopamine reuptake inhibitor. In contrast to the case for dopamine, amineptine does not induce the release of norepinephrine, and hence acts purely as a norepinephrine reuptake inhibitor. Unlike other TCAs, amineptine interacts very weakly or not at all with the serotonin, adrenergic, dopamine, histamine, and muscarinic acetylcholine receptors. The major metabolites of amineptine have similar activity to that of the parent compound, albeit with lower potency.

No human data appear to be available for binding or inhibition of the monoamine transporters by amineptine.

Pharmacokinetics

Peak plasma levels of amineptine following a single 100 mg oral dose have been found to range between 277 and 2,215 ng/mL (818-6,544 nM), with a mean of 772 ng/mL (2,281 nM), whereas maximal plasma concentrations of its major metabolite ranged between 144 and 1,068 ng/mL (465–3,452 nM), with a mean of 471 ng/mL (1,522 nM). After a single 200 mg oral dose of amineptine, mean peak plasma levels of amineptine were around 750 to 940 ng/mL (2,216-2,777 nM), while those of its major metabolite were about 750 to 970 ng/mL (2,216-3,135 nM). The time to peak concentrations is about 1 hour for amineptine and 1.5 hours for its major metabolite. The elimination half-life of amineptine is about 0.80 to 1.0 hours and that of its major metabolite is about 1.5 to 2.5 hours. Due to their very short elimination half-lives, amineptine and its major metabolite do not accumulate significantly with repeated administration.

Society and Culture

Brand Names

Amineptine has been sold under a variety of brand names including Survector, Maneon, Directim, Neolior, Provector, and Viaspera.

Legal Status

It had been proposed that Amineptine become a Schedule I controlled substance in the United States in July 2021.

This page is based on the copyrighted Wikipedia article <https://en.wikipedia.org/wiki/Amineptine&gt;; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

An Overview of Magnesium Stearate

Introduction

Have you ever wondered what coats your medications and vitamin/dietary/nutritional supplements? Well, it is an additive made from magnesium stearate.

“Magnesium stearate is widely used in the production of dietary supplement and pharmaceutical tablets, capsules and powders as well as many food products, including a variety of confectionery, spices and baking ingredients.” (Hobbs et al., 2017, p.554).

Magnesium stearate is a fine, light white powder that sticks to your skin and is greasy to the touch. It is a simple salt made up of two substances:

  • A saturated fat known stearic acid; and
  • The mineral magnesium.

Stearic acid can also be found in many foods, including:

  • Chicken;
  • Eggs;
  • Cheese;
  • Chocolate;
  • Walnuts;
  • Salmon;
  • Cotton seed oil;
  • Palm oil; and
  • Coconut oil.

Magnesium stearate is commonly added to many foods, pharmaceuticals, and cosmetics. In medications and vitamins, its primary purpose is to act as a lubricant. It may be derived from plants as well as animal sources.

What is it Used For?

  • It has been widely used for many decades in the food industry as an emulsifier, binder and thickener, as well as an anticaking, lubricant, release, and antifoaming agent.
  • It is present in many food supplements, confectionery, chewing gum, herbs and spices, and baking ingredients.
  • It is also commonly used as an inactive ingredient in the production of pharmaceutical tablets, capsules and powders.
  • It is useful because it has lubricating properties, preventing ingredients from sticking to manufacturing equipment during the compression of chemical powders into solid tablets; magnesium stearate is the most commonly used lubricant for tablets.
  • However, it might cause lower wettability and slower disintegration of the tablets and slower and even lower dissolution of the drug.
  • It can also be used efficiently in dry coating processes.
  • In the creation of pressed candies, magnesium stearate acts as a release agent and it is used to bind sugar in hard candies such as mints.
  • It is a common ingredient in baby formulas.

It is possible to create capsules without magnesium stearate, but it is more difficult to guarantee the consistency and quality of those capsules.

Other Names

Mangeniusm stearate has number of other names, approximately 45, including:

  • Magnesium Distearate.
  • Magnesium Octadecanoate.
  • Octadecanoic Acid, Magnesium Salt.
  • Dibasic Magnesium Stearate.
  • Stearic Acid, Magnesium Salt.
  • Magnesium Dioctadecanoate.
  • Synpro 90.
  • Petrac MG 20NF.
  • NS-M (Salt).
  • SM-P.
  • Synpro Magnesium Stearate 90.
  • HSDB 713.
  • Rashayan Magnesium Stearate.

How is it Manufactured/Made?

  • Molecular Formula: C36H70MgO4 or Mg(C18H35O2)2, it exists as a salt containing two stearate anions and a magnesium cation.
    • An anion has more electrons than protons, consequently giving it a net negative charge.
    • A cation has more protons than electrons, consequently giving it a net positive charge.
  • Magnesium stearate is produced by:
    • The reaction of sodium stearate (the sodium salt of stearic acid) with magnesium salts; or
    • Treating magnesium oxide with stearic acid.
  • Some nutritional supplements specify that the sodium stearate used in manufacturing magnesium stearate is produced from vegetable-derived stearic acid.

Magnesium stearate is a major component of bathtub rings. When produced by soap and hard water, magnesium stearate and calcium stearate both form a white solid insoluble in water, and are collectively known as soap scum.

What Does My Body Do With Magnesium?

  • Upon ingestion, magnesium stearate is dissolved into magnesium ion and stearic and palmitic acids.
  • Magnesium is absorbed primarily in the small intestine, and to a lesser extent, in the colon.
  • Magnesium is an essential mineral, serving as a cofactor for hundreds of enzymatic reactions and is essential for the synthesis of carbohydrates, lipids, nucleic acids and proteins, as well as neuromuscular and cardiovascular function.
  • The majority of magnesium content in the body is stored in bone and muscle.
  • A small amount (~1%) is present in serum and interstitial body fluid, mostly existing as a free cation while the remainder is bound to protein or exists as anion complexes.
  • The kidney is largely responsible for magnesium homeostasis and maintenance of serum concentration.
  • Excretion occurs primarily via the urine, but also occurs in sweat and breast milk.
  • Stearic and palmitic acids are products of the metabolism of edible oils and fats for which the metabolic fate has been well established.
  • These fatty acids undergo ß-oxidation to yield 2-carbon units which enter the tricarboxylic acid cycle (aka Krebs cycle and citric acid cycle, the second stage of cellular respiration) and the metabolic products are utilised and excreted.

How Much Can I Consume and What are the Risks?

  • The US Food and Drug Administration (FDA) has approved magnesium stearate for use as an additive in food and supplements, being classified (in the US) as generally recognised as safe (GRAS).
  • In the European Union (EU) and European Free Trade Agreement (EFTA) it is listed as food additive E470b.
  • In 1979, the FDA’s Subcommittee on GRAS Substances (SCOGS) reported, “There is no evidence in the available information on … magnesium stearate … that demonstrates, or suggests reasonable grounds to suspect, a hazard to the public when they are used at levels that are now current and in the manner now practiced, or which might reasonably be expected in the future.”
  • It is generally considered to have a “safe toxicity profile”. (Hobbs et al., 2017, p.554).
  • According to PubChem (a part of the The National Library of Medicine’s National Centre for Biotechnology Information), it is considered safe for consumption at amounts below 2,500 milligrams (mg) per kilogram per day. For a 150-pound (68 kg) adult, that equals 170,000 mg per day.
  • Capsule manufacturers typically use only small amounts of magnesium stearate in their products. When you take their products at the recommended dose, they do not contain enough magnesium stearate to cause negative side effects.

“Stearic acid typically ranges between 0.5-10 percent of the tablet weight while magnesium stearate typically represents 0.25-1.5 percent of the tablet weight. Therefore, in a 500 mg tablet, the amount of stearic acid would probably be about 25 mg, and magnesium stearate about 5 mg.” (Bruno, 2013, p.53).

What are the Health Risks of Magnesium Stearate?

  • Toxicology data from animal studies relevant to evaluation of magnesium stearate are lacking (e.g. doses that will not lead to a dietary imbalance, known composition of material tested, appropriate administration route, etc.).
  • There are also no human data related to magnesium stearate toxicity.
  • It has been noted that infants are particularly sensitive to the sedative effects of magnesium salts and that individuals with chronic renal impairment retained 15-30% of administered magnesium, which may cause toxicity.
  • Moreover, diarrhoea and other gastrointestinal effects have been observed with excessive magnesium intake resulting from use of various magnesium salts for pharmacological/medicinal purposes.
  • Many magnesium-containing food additives have been evaluated individually, but not collectively, for laxative effects.
  • With this in mind, it is important to understand what effect cumulative exposure to magnesium via food additives may have, although studies indicate a lack of genotoxic risk posed specifically by magnesium stearate consumed at current estimated dietary exposures.
  • PubChem also notes that it can be an irritant which may cause skin, eye, and respiratory irritation, as well as potentially causing long lasting harmful effects to aquatic life (although relates to the powder form and not capsule form).
  • Some people report having negative reactions to magnesium stearate and feel much better when they eliminate it. These people might have a sensitivity to it. It is possible to be allergic to magnesium stearate, and it can be difficult to avoid this food additive.

Alleged Health Risks Not Borne Out by the Science

  • Some people (mainly on the internet) claim that magnesium stearate suppresses your immune T-cell function and causes the cell membrane integrity in your helper T cells to collapse.
    • However, there is no scientific evidence to support those claims.
    • Generally, these claims have been made based on a single mouse study that was related to stearic acid, not magnesium stearate (Tebbey & Buttke, 1990).
    • Mice lack an enzyme in their T cells that humans have. This makes stearic acid safe for us to ingest. Human T-cells have the delta-9 desaturase enzyme required to convert stearic acid into oleic acid to avoid a toxic build-up.
    • Another factor to consider is that the study was conducted by bathing the mouse T-cells in stearic acid.
    • It is impossible to consume stearic acid in such humongous amounts through supplements.
  • Some people have also claimed that magnesium stearate might interfere with your body’s ability to absorb the contents of medication capsules.
    • Studies have found that although magnesium stearate may slow down dissolution and absorption in some cases, it does not affect the overall bioavailability of nutrients.
  • Gene Bruno (MS, MHS), writing in Vitamin Retailer in March 2013, gives a good outline on why the above two points are not borne out by the science.
  • Another claim is that magnesium stearate can form a biofilm in the intestines just as soaps containing calcium and magnesium stearates form soap scum in sinks and bathtubs.
    • The Human gut environment is completely different to that of a bathroom.
    • Human intestines have acids and enzymes that do not allow soap scum to accumulate.
    • And, soap scum is nothing like a biofilm – If anything, magnesium stearate can actually prevent the formation of biofilms.

What are the Alternatives to Magnesium Stearate?

Magnesium stearate and stearic acid are the most common lubricants used in pharmaceutical processes. However, there are other lubricants, including fatty acid esters, inorganic materials, and polymers.

  • Metallic Salts of Fatty Acids:
    • They are still the most dominant class of lubricants.
    • Magnesium stearate, calcium stearate, and zinc stearate are the three common metallic salts of fatty acids used.
    • Of these three lubricants, magnesium stearate is one of the most frequently used.
  • Fatty Acids:
    • These are also common lubricants, with stearic acid being the most popular one.
    • Chemically, stearic acid is a straight-chain saturated monobasic acid found in animal fats and in varying degrees in cotton seed, corn, and coco.
    • The commercial material of stearic acid has other minor fatty acid constituents such as myistic acid and palmitic acid.
  • Fatty Acid Esters:
    • Fatty acid esters, including glyceride esters (glyceryl monostearate, glyceryl tribehenate, and glyceryl dibehenate) and sugar esters (sorbitan monostearate and sucrose monopalmitate), are often used as lubricants in the preparation of solid dosage forms.
    • In particular, Compritol® 888 ATO is an effective lubricant to replace magnesium stearate when the latter causes delay of dissolution and other compatibility issues.
  • Inorganic Materials and Polymers:
    • Are used as lubricants when magnesium stearate is not appropriate.
    • In terms of inorganic materials, talc (a hydrated magnesium silicate (Mg3Si4O10(OH)2)), is often used as a lubricant or a glidant in formulations.
    • Similarly, polymers, such as PEG 4000, are occasionally used as lubricants in solid dosage forms when the use of magnesium stearate displays compression and chemical incompatibility issues.

Besides the conventional lubricants, manufacturers are also using natural-based lubricants (such as rice extract) or excipient premixes (such as cellulose/rice extract/oil/wax).

Summary

The benefits of using magnesium stearate in supplements far outweigh the potential risks. And, apart from ensuring a homogenous mixture of active ingredients and accurate, consistent dosage, magnesium stearate has several health benefits of its own. As an essential mineral, magnesium is crucial for more than 300 enzyme reactions occurring in the human body. Stearic acid is known to lower LDL cholesterol and improve heart function.

References and Further Reading

What is Physical Dependence?

Introduction

Physical dependence is a physical condition caused by chronic use of a tolerance-forming drug, in which abrupt or gradual drug withdrawal causes unpleasant physical symptoms.

Physical dependence can develop from low-dose therapeutic use of certain medications such as benzodiazepines, opioids, antiepileptics and antidepressants, as well as the recreational misuse of drugs such as alcohol, opioids and benzodiazepines. The higher the dose used, the greater the duration of use, and the earlier age use began are predictive of worsened physical dependence and thus more severe withdrawal syndromes.

Acute withdrawal syndromes can last days, weeks or months. Protracted withdrawal syndrome, also known as post-acute-withdrawal syndrome or “PAWS”, is a low-grade continuation of some of the symptoms of acute withdrawal, typically in a remitting-relapsing pattern, often resulting in relapse and prolonged disability of a degree to preclude the possibility of lawful employment. Protracted withdrawal syndrome can last for months, years, or depending on individual factors, indefinitely. Protracted withdrawal syndrome is noted to be most often caused by benzodiazepines. To dispel the popular mis-association with addiction, physical dependence to medications is sometimes compared to dependence on insulin by persons with diabetes.

Symptoms

Physical dependence can manifest itself in the appearance of both physical and psychological symptoms which are caused by physiological adaptions in the central nervous system and the brain due to chronic exposure to a substance. Symptoms which may be experienced during withdrawal or reduction in dosage include increased heart rate and/or blood pressure, sweating, and tremors.[9] More serious withdrawal symptoms such as confusion, seizures, and visual hallucinations indicate a serious emergency and the need for immediate medical care.

Sedative hypnotic drugs such as alcohol, benzodiazepines, and barbiturates are the only commonly available substances that can be fatal in withdrawal due to their propensity to induce withdrawal convulsions. Abrupt withdrawal from other drugs, such as opioids can cause an extremely painful withdrawal that is very rarely fatal in patients of general good health and with medical treatment, but is more often fatal in patients with weakened cardiovascular systems; toxicity is generally caused by the often-extreme increases in heart rate and blood pressure (which can be treated with clonidine), or due to arrhythmia due to electrolyte imbalance caused by the inability to eat, and constant diarrhoea and vomiting (which can be treated with loperamide and ondansetron respectively) associated with acute opioid withdrawal, especially in longer-acting substances where the diarrhoea and emesis can continue unabated for weeks, although life-threatening complications are extremely rare, and nearly non-existent with proper medical management.

Treatment

Treatment for physical dependence depends upon the drug being withdrawn and often includes administration of another drug, especially for substances that can be dangerous when abruptly discontinued or when previous attempts have failed. Physical dependence is usually managed by a slow dose reduction over a period of weeks, months or sometimes longer depending on the drug, dose and the individual. A physical dependence on alcohol is often managed with a cross tolerant drug, such as long acting benzodiazepines to manage the alcohol withdrawal symptoms.

Drugs That Cause Physical Dependence

  • All µ-opioids with any (even slight) agonist effect, such as (partial list) morphine, heroin, codeine, oxycodone, buprenorphine, nalbuphine, methadone, and fentanyl, but not agonists specific to non-µ opioid receptors, such as salvinorin A (a k-opioid agonist), nor opioid antagonists or inverse agonists, such as naltrexone (a universal opioid inverse agonist).
  • All GABA agonists and positive allosteric modulators of both the GABA-A ionotropic receptor and GABA-B metabotropic receptor subunits, including (partial list):
  • Nicotine (tobacco) (cf. nicotine withdrawal).
  • Gabapentinoids such as gabapentin (Neurontin), pregabalin (Lyrica), and phenibut (Noofen), which are inhibitors of α2δ subunit-containing VDCCs.
  • Antiepileptic drugs such as valproate, lamotrigine, tiagabine, vigabatrin, carbamazepine and oxcarbazepine, and topiramate.
  • Antipsychotic drugs such as clozapine, risperidone, olanzapine, haloperidol, thioridazine, etc.
  • Commonly prescribed antidepressants such as the selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) (cf. SSRI/SNRI withdrawal syndrome).
  • Blood pressure medications, including beta blockers such as propanolol and alpha-adrenergic agonists such as clonidine.
  • Androgenic-anabolic steroids.
  • Glucocorticoids.

Rebound Syndrome

Refer to Rebound Effect.

A wide range of drugs whilst not causing a true physical dependence can still cause withdrawal symptoms or rebound effects during dosage reduction or especially abrupt or rapid withdrawal. These can include caffeine, stimulants, steroidal drugs and antiparkinsonian drugs. It is debated whether the entire antipsychotic drug class causes true physical dependency, a subset, or if none do. But, if discontinued too rapidly, it could cause an acute withdrawal syndrome. When talking about illicit drugs rebound withdrawal, especially with stimulants, it is sometimes referred to as “coming down” or “crashing”.

Some drugs, like anticonvulsants and antidepressants, describe the drug category and not the mechanism. The individual agents and drug classes in the anticonvulsant drug category act at many different receptors and it is not possible to generalise their potential for physical dependence or incidence or severity of rebound syndrome as a group so they must be looked at individually. Anticonvulsants as a group however are known to cause tolerance to the anti-seizure effect. SSRI drugs, which have an important use as antidepressants, engender a discontinuation syndrome that manifests with physical side effects; e.g. there have been case reports of a discontinuation syndrome with venlafaxine (Effexor).

What is Benzatropine?

Introduction

Benzatropine (an international non-proprietary name, INN), known as benztropine in the United States and Japan, is a medication used to treat a type of movement disorder due to antipsychotics known as dystonia and parkinsonism.

It is not useful for tardive dyskinesia. It is taken by mouth or by injection into a vein or muscle. Benefits are seen within two hours and last for up to ten hours.

Common side effects include dry mouth, blurry vision, nausea, and constipation. Serious side effect may include urinary retention, hallucinations, hyperthermia, and poor coordination. It is unclear if use during pregnancy or breastfeeding is safe. Benzatropine is an anticholinergic which works by blocking the activity of the muscarinic acetylcholine receptor.

Benzatropine was approved for medical use in the United States in 1954. It is available as a generic medication. In 2017, it was the 226th most commonly prescribed medication in the United States, with more than two million prescriptions. It is sold under the brand name Cogentin among others.

Medical Uses

Benzatropine is used to reduce extrapyramidal side effects of antipsychotic treatment. Benzatropine is also a second-line drug for the treatment of Parkinson’s disease. It improves tremor, and may alleviate rigidity and bradykinesia. Benzatropine is also sometimes used for the treatment of dystonia, a rare disorder that causes abnormal muscle contraction, resulting in twisting postures of limbs, trunk, or face.

Adverse Effects

These are principally anticholinergic:

  • Dry mouth.
  • Blurred vision.
  • Cognitive changes.
  • Drowsiness.
  • Constipation.
  • Urinary retention.
  • Tachycardia.
  • Anorexia.
  • Severe delirium and hallucinations (in overdose).

While some studies suggest that use of anticholinergics increases the risk of tardive dyskinesia (a long-term side effect of antipsychotics), other studies have found no association between anticholinergic exposure and risk of developing tardive dyskinesia, although symptoms may be worsened.

Drugs that decrease cholinergic transmission may impair storage of new information into long-term memory. Anticholinergic agents can also impair time perception.

Pharmacology

Benzatropine is a centrally acting anticholinergic/antihistamine agent. It is a selective M1 muscarinic acetylcholine receptor antagonist. Benzatropine partially blocks cholinergic activity in the basal ganglia and has also been shown to increase the availability of dopamine by blocking its reuptake and storage in central sites, and as a result, increasing dopaminergic activity. Animal studies have indicated that anticholinergic activity of benzatropine is approximately one-half that of atropine, while its antihistamine activity approaches that of mepyramine. Its anticholinergic effects have been established as therapeutically significant in the management of Parkinsonism. Benzatropine antagonises the effect of acetylcholine, decreasing the imbalance between the neurotransmitters acetylcholine and dopamine, which may improve the symptoms of early Parkinson’s disease.

Benzatropine analogues are atypical dopamine reuptake inhibitors, which might make them useful for people with akathisia secondary to antipsychotic therapy.

Benzatropine also acts as a functional inhibitor of acid sphingomyelinase (FIASMA).

Benzatropine has been also identified, by a high throughput screening approach, as a potent differentiating agent for oligodendrocytes, possibly working through M1 and M3 muscarinic receptors. In preclinical models for multiple sclerosis, benzatropine decreased clinical symptoms and enhanced re-myelination.

Other Animals

In veterinary medicine, benzatropine is used to treat priapism in stallions.

Naming

Since 1959, benzatropine is the official INN name of the medication under the INN scheme, the medication naming system coordinated by the World Health Organisation (WHO); it is also the British Approved Name (BAN) given in the British Pharmacopoeia, and has been the official non-proprietary name in Australia since 2015. Regional variations of the “a” spelling are also used in French, Italian, Portuguese, and Spanish, as well as Latin (all medications are assigned a Latin name by WHO).

“Benztropine” is the official United States Adopted Name (USAN), the medication naming system coordinated by the USAN Council, co-sponsored by the American Medical Association (AMA), the United States Pharmacopeial Convention (USP), and the American Pharmacists Association (APhA). It is also the Japanese Accepted Name (JAN) and was used in Australia until 2015, when it was harmonised with the INN.

Both names may be modified to account for the methanesulfonate salt as which the medication is formulated: the modified INN (INNm) and BAN (BANM) is benzatropine mesilate, while the modified USAN is benztropine mesylate. The modified JAN is a hybrid form, benztropine mesilate.

The misspelling benzotropine is also occasionally seen in the literature.

What is Nordazepam?

Introduction

Nordazepam (INN; marketed under brand names Nordaz, Stilny, Madar, Vegesan, and Calmday; also known as nordiazepam, desoxydemoxepam, and desmethyldiazepam) is a 1,4-benzodiazepine derivative. Like other benzodiazepine derivatives, it has amnesic, anticonvulsant, anxiolytic, muscle relaxant, and sedative properties. However, it is used primarily in the treatment of anxiety disorders. It is an active metabolite of diazepam, chlordiazepoxide, clorazepate, prazepam, pinazepam, and medazepam.

Nordazepam is among the longest lasting (longest half-life) benzodiazepines, and its occurrence as a metabolite is responsible for most cumulative side-effects of its myriad of pro-drugs when they are used repeatedly at moderate-high doses; the nordazepam metabolite oxazepam is also active (and is a more potent, full benzodiazepine-site agonist), which contributes to nordazepam cumulative side-effects but occur too minutely to contribute to the cumulative side-effects of nordazepam pro-drugs (except when they are abused chronically in extremely supra-therapeutic doses).

Side effects

Common side effects of nordazepam include somnolence, which is more common in elderly patients and/or people on high-dose regimens. Hypotonia, which is much less common, is also associated with high doses and/or old age.

Contraindications and Special Caution

Benzodiazepines require special precaution if used in the elderly, during pregnancy, in children, alcohol- or drug-dependent individuals, and individuals with comorbid psychiatric disorders. As with many other drugs, changes in liver function associated with aging or diseases such as cirrhosis, may lead to impaired clearance of nordazepam.

Pharmacology

Nordazepam is a partial agonist at the GABAA receptor, which makes it less potent than other benzodiazepines, particularly in its amnesic and muscle-relaxing effects. Its elimination half life is between 36 and 200 hours, with wide variation among individuals; factors such as age and gender are known to impact it. The variation of reported half-lives are attributed to differences in nordazepam metabolism and that of its metabolites as nordazepam is hydroxylated to active metabolites such as oxazepam, before finally being glucuronidated and excreted in the urine. This can be attributed to extremely variable hepatic and renal metabolic functions among individuals depending upon a number of factors (including age, ethnicity, disease, and current or previous use/abuse of other drugs/medicines).

Pregnancy and Nursing Mothers

Nordazepam, like other benzodiazepines, easily crosses the placental barrier, so the drug should not be administered during the first trimester of pregnancy. In case of serious medical reasons, nordazepam can be given in late pregnancy, but the foetus, due to the pharmacological action of the drug, may experience side effects such as hypothermia, hypotonia, and sometimes mild respiratory depression. Since nordazepam and other benzodiazepines are excreted in breast milk, the substance should not be administered to mothers who are breastfeeding. Discontinuing of breast-feeding is indicated for regular intake by the mother.

Recreational Use

Refer to Benzodiazepine Use Disorder.

Nordazepam and other sedative-hypnotic drugs are detected frequently in cases of people suspected of driving under the influence of drugs. Many drivers have blood levels far exceeding the therapeutic dose range, suggesting benzodiazepines are commonly used in doses higher than the recommended doses.

What is Fosazepam?

Introduction

Fosazepam is a drug which is a benzodiazepine derivative; it is a water soluble derivative of diazepam. It has sedative and anxiolytic effects, and is a derivative of diazepam which has been substituted with a dimethylphosphoryl group to improve solubility in water.

Background

Fosazepam has similar effects on sleep as other benzodiazepines. In a clinical trial it was reported that fosazepam to lead to increased sleep duration with less broken sleep but sleep quality was worsened with suppressed deep sleep and increased light sleep. Adverse effects included feelings of impaired morning vitality and upon discontinuing the drug benzodiazepine withdrawal symptoms of anxiety, impaired concentration and impaired morning vitality were experienced. Another clinical trial also found worsening of sleep while on benzodiazepines as well as during withdrawal with suppression of deep sleep stages including REM (rapid eye movement) sleep, with increased light sleep upon withdrawal. The main metabolites of fosazepam are 3-hydroxyfosazepam and the active metabolite desmethyldiazepam which has a very long elimination half-life of about 3 days. Tolerance to the hypnotic effects of fosazepam starts to develop after about 7 days of use. Due to the very long elimination half-life of the active metabolite of fosazepam it is not recommended for use as a hypnotic. The main pharmacological effects of fosazepam may be due to its metabolite nordiazepam (desmethyldiazepam), rather than the parent drug. The long-acting active metabolite nordazepam (refer to nordiazepam) can cause extended sedative effects at high doses or with prolonged use, and may produce residual sedation upon awakening.

Fosazepam is of relatively low potency compared to other benzodiazepine derivatives, with a 100 mg dose of fosazepam equivalent to 10 mg of nitrazepam. 60 mg of fosazepam has also been estimated to be equivalent to about 5-10 mg of diazepam. Fosazepam has similar effects to nitrazepam, but with a shorter duration of action and less tendency to cause over sedation, motor-impairment, amnesia, rebound insomnia, and morning grogginess.

What is Clomipramine?

Introduction

Clomipramine, sold under the brand name Anafranil among others, is a tricyclic antidepressant (TCA).

It is used for the treatment of obsessive-compulsive disorder (OCD), panic disorder, major depressive disorder (MDD), and chronic pain. It may increase the risk of suicide in those under the age of 25. It is taken by mouth. It has also been used to treat premature ejaculation.

Common side effects include dry mouth, constipation, loss of appetite, sleepiness, weight gain, sexual dysfunction, and trouble urinating. Serious side effects include an increased risk of suicidal behaviour in those under the age of 25, seizures, mania, and liver problems. If stopped suddenly a withdrawal syndrome may occur with headaches, sweating, and dizziness. It is unclear if it is safe for use in pregnancy. Its mechanism of action is not entirely clear but is believed to involve increased levels of serotonin.

Clomipramine was discovered in 1964 by the Swiss drug manufacturer Ciba-Geigy. It is on the World Health Organisation’s List of Essential Medicines. It is available as a generic medication.

Brief History

Clomipramine was developed by Geigy as a chlorinated derivative of Imipramine. It was first referenced in the literature in 1961 and was patented in 1963. The drug was first approved for medical use in Europe in the treatment of depression in 1970, and was the last of the major TCAs to be marketed. In fact, clomipramine was initially considered to be a “me-too drug” by the FDA, and in relation to this, was declined licensing for depression in the United States. As such, to this day, clomipramine remains the only TCA that is available in the United States that is not approved for the treatment of depression, in spite of the fact that it is a highly effective antidepressant. Clomipramine was eventually approved in the United States for the treatment of OCD in 1989 and became available in 1990. It was the first drug to be investigated and found effective in the treatment of OCD. The first reports of benefits in OCD were in 1967, and the first double-blind, placebo-controlled clinical trial of clomipramine for OCD was conducted in 1976, with more rigorous clinical studies that solidified its effectiveness conducted in the 1980s. It remained the “gold standard” for the treatment of OCD for many years until the introduction of the SSRIs, which have since largely superseded it due to greatly improved tolerability and safety (although notably not effectiveness). Clomipramine is the only TCA that has been shown to be effective in the treatment of OCD and that is approved by the US Food and Drug Administration (FDA) for the treatment of OCD; the other TCAs failed clinical trials for this indication, likely due to insufficient serotonergic activity.

Medical Uses

Clomipramine has a number of uses in medicine including in the treatment of:

  • OCD which is its only US Food and Drug Administration (FDA)-labelled indication. Other regulatory agencies (such as the TGA of Australia and the MHRA of the UK) have also approved clomipramine for this indication.
  • MDD a popular off-label use in the US. It is approved by the Australian TGA and the United Kingdom MHRA for this indication. Some have suggested the possible superior efficacy of clomipramine compared to other antidepressants in the treatment of MDD, although at the current time the evidence is insufficient to adequately substantiate this claim.
  • Panic disorder with or without agoraphobia.
  • Body dysmorphic disorder.
  • Cataplexy associated with narcolepsy. Which is a TGA and MHRA-labelled indication for clomipramine.
  • Premature ejaculation.
  • Depersonalisation disorder.
  • Chronic pain with or without organic disease, particularly headache of the tension type.
  • Sleep paralysis, with or without narcolepsy.
  • Enuresis (involuntary urinating in sleep) in children. The effect may not be sustained following treatment, and alarm therapy may be more effective in both the short-term and the long-term. Combining a tricyclic (such as clomipramine) with anticholinergic medication, may be more effective for treating enuresis than the tricyclic alone.
  • Trichotillomania.

In a meta-analysis of various trials involving fluoxetine (Prozac), fluvoxamine (Luvox), and sertraline (Zoloft) to test their relative efficacies in treating OCD, clomipramine was found to be the most effective.

Contraindications

Contraindications include:

  • Known hypersensitivity to clomipramine, or any of the excipients or cross-sensitivity to tricyclic antidepressants of the dibenzazepine group.
  • Recent myocardial infarction.
  • Any degree of heart block or other cardiac arrhythmias.
  • Mania.
  • Severe liver disease.
  • Narrow angle glaucoma.
  • Urinary retention.
  • It must not be given in combination or within 3 weeks before or after treatment with a monoamine oxidase inhibitor (Moclobemide included, however clomipramine can be initiated sooner at 48 hours following discontinuation of moclobemide).

Pregnancy and Lactation

Clomipramine use during pregnancy is associated with congenital heart defects in the newborn. It is also associated with reversible withdrawal effects in the newborn. Clomipramine is also distributed in breast milk and hence nursing while taking clomipramine is advised against.

Side Effects

Clomipramine has been associated with the following side effects:

  • Very common (>10% frequency):
    • Accommodation defect.
    • Blurred vision.
    • Nausea.
    • Dry mouth (Xerostomia).
    • Constipation.
    • Fatigue.
    • Weight gain.
    • Increased appetite.
    • Dizziness.
    • Tremor.
    • Headache.
    • Myoclonus.
    • Drowsiness.
    • Somnolence.
    • Restlessness.
    • Micturition disorder.
    • Sexual dysfunction (erectile dysfunction and loss of libido).
    • Hyperhidrosis (profuse sweating).
  • Common (1-10% frequency):
    • Weight loss.
    • Orthostatic hypotension.
    • Sinus tachycardia.
    • Clinically irrelevant ECG changes (e.g. T- and ST-wave changes) in patients of normal cardiac status.
    • Palpitations.
    • Tinnitus (hearing ringing in one’s ears).
    • Mydriasis (dilated pupils).
    • Vomiting.
    • Abdominal disorders.
    • Diarrhoea.
    • Decreased appetite.
    • Increased transaminases.
    • Increased Alkaline phosphatase.
    • Speech disorders.
    • Paraesthesia.
    • Muscle hypertonia.
    • Dysgeusia.
    • Memory impairment.
    • Muscular weakness.
    • Disturbance in attention.
    • Confusional state.
    • Disorientation.
    • Hallucinations (particularly in elderly patients and patients with Parkinson’s disease).
    • Anxiety.
    • Agitation.
    • Sleep disorders.
    • Mania.
    • Hypomania.
    • Aggression.
    • Depersonalisation.
    • Insomnia.
    • Nightmares.
    • Aggravation of depression.
    • Delirium.
    • Galactorrhoea (lactation that is not associated with pregnancy or breastfeeding).
    • Breast enlargement.
    • Yawning.
    • Hot flush.
    • Dermatitis allergic (skin rash, urticaria).
    • Photosensitivity reaction.
    • Pruritus (itching).
  • Uncommon (0.1-1% frequency):
    • Convulsions.
    • Ataxia.
    • Arrhythmias.
    • Elevated blood pressure.
    • Activation of psychotic symptoms.
  • Very rare (<0.01% frequency):
    • Pancytopaenia: An abnormally low amount of all the different types of blood cells in the blood (including platelets, white blood cells and red blood cells).
    • Leukopenia: A low white blood cell count.
    • Agranulocytosis: A more severe form of leukopenia; a dangerously low neutrophil count which leaves one open to life-threatening infections due to the role of the white blood cells in defending the body from invaders.
    • Thrombocytopenia: An abnormally low amount of platelets in the blood which are essential to clotting and hence this leads to an increased tendency to bruise and bleed, including, potentially, internally.
    • Eosinophilia: An abnormally high number of eosinophils – the cells that fight off parasitic infections – in the blood.
    • Syndrome of inappropriate secretion of antidiuretic hormone (SIADH): A potentially fatal reaction to certain medications that is due to an excessive release of antidiuretic hormone – a hormone that prevents the production of urine by increasing the reabsorption of fluids in the kidney – this results in the development of various electrolyte abnormalities (e.g. hyponatraemia [low blood sodium], hypokalaemia [low blood potassium], hypocalcaemia [low blood calcium]).
    • Glaucoma.
    • Oedema (local or generalised).
    • Alopecia (hair loss).
    • Hyperpyrexia (a high fever that is above 41.5 °C).
    • Hepatitis (liver swelling) with or without jaundice: The yellowing of the eyes, the skin, and mucous membranes due to impaired liver function.
    • Abnormal ECG.
    • Anaphylactic and anaphylactoid reactions including hypotension.
    • Neuroleptic malignant syndrome (NMS): A potentially fatal side effect of antidopaminergic agents such as antipsychotics, tricyclic antidepressants and antiemetics (drugs that relieve nausea and vomiting). NMS develops over a period of days or weeks and is characterised by the following symptoms:
      • Tremor.
      • Muscle rigidity.
      • Mental status change (such as confusion, delirium, mania, hypomania, agitation, coma, etc.).
      • Hyperthermia (high body temperature).
      • Tachycardia (high heart rate).
      • Blood pressure changes.
      • Diaphoresis (sweating profusely).
      • Diarrhoea.
    • Alveolitis allergic (pneumonitis) with or without eosinophilia.
    • Purpura.
    • Conduction disorder (e.g. widening of QRS complex, prolonged QT interval, PR/PQ interval changes, bundle-branch block, torsade de pointes, particularly in patients with hypokalaemia).

Withdrawal

Withdrawal symptoms may occur during gradual or particularly abrupt withdrawal of tricyclic antidepressant drugs. Possible symptoms include: nausea, vomiting, abdominal pain, diarrhoea, insomnia, headache, nervousness, anxiety, dizziness and worsening of psychiatric status. Differentiating between the return of the original psychiatric disorder and clomipramine withdrawal symptoms is important. Clomipramine withdrawal can be severe. Withdrawal symptoms can also occur in neonates when clomipramine is used during pregnancy. A major mechanism of withdrawal from tricyclic antidepressants is believed to be due to a rebound effect of excessive cholinergic activity due to neuroadaptations as a result of chronic inhibition of cholinergic receptors by tricyclic antidepressants. Restarting the antidepressant and slow tapering is the treatment of choice for tricyclic antidepressant withdrawal. Some withdrawal symptoms may respond to anticholinergics, such as atropine or benztropine mesylate.

Overdose

Refer to Tricyclic Antidepressant Overdose.

Clomipramine overdose usually presents with the following symptoms:

  • Signs of central nervous system depression such as:
    • Stupor.
    • Coma.
    • Drowsiness.
    • Restlessness.
    • Ataxia.
  • Mydriasis.
  • Convulsions.
  • Enhanced reflexes.
  • Muscle rigidity.
  • Athetoid and choreoathetoid movements.
  • Serotonin syndrome: A condition with many of the same symptoms as neuroleptic malignant syndrome but has a significantly more rapid onset.
  • Cardiovascular effects including:
    • Arrhythmias (including Torsades de pointes).
    • Tachycardia.
    • QTc interval prolongation.
    • Conduction disorders.
    • Hypotension.
    • Shock.
    • Heart failure.
    • Cardiac arrest.
  • Apnoea.
  • Cyanosis.
  • Respiratory depression.
  • Vomiting.
  • Fever.
  • Sweating.
  • Oliguria.
  • Anuria.

There is no specific antidote for overdose and all treatment is purely supportive and symptomatic. Treatment with activated charcoal may be used to limit absorption in cases of oral overdose. Anyone suspected of overdosing on clomipramine should be hospitalised and kept under close surveillance for at least 72 hours. Clomipramine has been reported as being less toxic in overdose than most other TCAs in one meta-analysis but this may well be due to the circumstances surrounding most overdoses as clomipramine is more frequently used to treat conditions for which the rate of suicide is not particularly high such as OCD. In another meta-analysis, however, clomipramine was associated with a significant degree of toxicity in overdose.

Interactions

Clomipramine may interact with a number of different medications, including the monoamine oxidase inhibitors which include isocarboxazid, moclobemide, phenelzine, selegiline and tranylcypromine, antiarrhythmic agents (due to the effects of TCAs like clomipramine on cardiac conduction. There is also a potential pharmacokinetic interaction with quinidine due to the fact that clomipramine is metabolised by CYP2D6 in vivo), diuretics (due to the potential for hypokalaemia (low blood potassium) to develop which increases the risk for QT interval prolongation and torsades de pointes), the selective serotonin reuptake inhibitors (SSRIs; due to both potential additive serotonergic effects leading to serotonin syndrome and the potential for a pharmacokinetic interaction with the SSRIs that inhibit CYP2D6 [e.g. fluoxetine and paroxetine]) and serotonergic agents such as triptans, other tricyclic antidepressants, tramadol, etc. (due to the potential for serotonin syndrome). Its use is also advised against in those concurrently on CYP2D6 inhibitors due to the potential for increased plasma levels of clomipramine and the resulting potential for CNS and cardiotoxicity.

Pharmacology

Pharmacodynamics

Clomipramine is a reuptake inhibitor of serotonin and norepinephrine, or a serotonin-norepinephrine reuptake inhibitor (SNRI); that is, it blocks the reuptake of these neurotransmitters back into neurons by preventing them from interacting with their transporters, thereby increasing their extracellular concentrations in the synaptic cleft and resulting in increased serotonergic and noradrenergic neurotransmission. In addition, clomipramine also has antiadrenergic, antihistamine, antiserotonergic, antidopaminergic, and anticholinergic activities. It is specifically an antagonist of the α1-adrenergic receptor, the histamine H1 receptor, the serotonin 5-HT2A, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptors, the dopamine D1, D2, and D3 receptors, and the muscarinic acetylcholine receptors (M1-M5). Like other TCAs, clomipramine weakly blocks voltage-dependent sodium channels as well.

Although clomipramine shows around 100- to 200-fold preference in affinity for the serotonin transporter (SERT) over the norepinephrine transporter (NET), its major active metabolite, desmethylclomipramine (norclomipramine), binds to the NET with very high affinity (Ki = 0.32 nM) and with dramatically reduced affinity for the SERT (Ki = 31.6 nM). Moreover, desmethylclomipramine circulates at concentrations that are approximately twice those of clomipramine. In accordance, occupancy of both the SERT and the NET has been shown with clomipramine administration in positron emission tomography studies with humans and non-human primates. As such, clomipramine is in fact a fairly balanced SNRI rather than only a serotonin reuptake inhibitor (SRI).

The antidepressant effects of clomipramine are thought to be due to reuptake inhibition of serotonin and norepinephrine, while serotonin reuptake inhibition only is thought to be responsible for the effectiveness of clomipramine in the treatment of OCD. Conversely, antagonism of the H1, α1-adrenergic, and muscarinic acetylcholine receptors is thought to contribute to its side effects. Blockade of the H1 receptor is specifically responsible for the antihistamine effects of clomipramine and side effects like sedation and somnolence (sleepiness). Antagonism of the α1-adrenergic receptor is thought to cause orthostatic hypotension and dizziness. Inhibition of muscarinic acetylcholine receptors is responsible for the anticholinergic side effects of clomipramine like dry mouth, constipation, urinary retention, blurred vision, and cognitive/memory impairment. In overdose, sodium channel blockade in the brain is believed to cause the coma and seizures associated with TCAs while blockade of sodium channels in the heart is considered to cause cardiac arrhythmias, cardiac arrest, and death. On the other hand, sodium channel blockade is also thought to contribute to the analgesic effects of TCAs, for instance in the treatment of neuropathic pain.

The exceptionally strong serotonin reuptake inhibition of clomipramine likely precludes the possibility of its antagonism of serotonin receptors (which it binds to with more than 100-fold lower affinity than the SERT) resulting in a net decrease in signalling by these receptors. In accordance, while serotonin receptor antagonists like cyproheptadine and chlorpromazine are effective as antidotes against serotonin syndrome, clomipramine is nonetheless capable of inducing this syndrome. In fact, while all TCAs are SRIs and serotonin receptor antagonists to varying extents, the only TCAs that are associated with serotonin syndrome are clomipramine and to a lesser extent its dechlorinated analogue imipramine, which are the two most potent SRIs of the TCAs (and in relation to this have the highest ratios of serotonin reuptake inhibition to serotonin receptor antagonism). As such, whereas other TCAs can be combined with monoamine oxidase inhibitors (with caution due to the risk of hypertensive crisis from NET inhibition; sometimes done in treatment-resistant depressives), clomipramine cannot be due to the risk of serotonin syndrome and death. Unlike the case of its serotonin receptor antagonism, orthostatic hypotension is a common side effect of clomipramine, suggesting that its blockade of the α1-adrenergic receptor is strong enough to overcome the stimulatory effects on the α1-adrenergic receptor of its NET inhibition.

Serotonergic Activity

Clomipramine is a very strong SRI. Its affinity for the SERT was reported in one study using human tissues to be 0.14 nM, which is considerably higher than that of other TCAs. For example, the TCAs with the next highest affinities for the SERT in the study were imipramine, amitriptyline, and dosulepin (dothiepin), with Ki values of 1.4 nM, 4.3 nM, and 8.3 nM, respectively. In addition, clomipramine has a terminal half-life that is around twice as long as that of amitriptyline and imipramine. In spite of these differences however, clomipramine is used clinically at the same usual dosages as other serotonergic TCAs (100-200 mg/day). It achieves typical circulating concentrations that are similar in range to those of other TCAs but with an upper limit that is around twice that of amitriptyline and imipramine. For these reasons, clomipramine is the most potent SRI among the TCAs and is far stronger as an SRI than other TCAs at typical clinical dosages. In addition, clomipramine is more potent as an SRI than any SSRIs, it is more potent than paroxetine, which is the strongest SSRI.

A positron emission tomography study found that a single low dose of 10 mg clomipramine to healthy volunteers resulted in 81.1% occupancy of the SERT, which was comparable to the 84.9% SERT occupancy by 50 mg fluvoxamine. In the study, single doses of 5 to 50 mg clomipramine resulted in 67.2 to 94.0% SERT occupancy while single doses of 12.5 to 50 mg fluvoxamine resulted in 28.4 to 84.9% SERT occupancy. Chronic treatment with higher doses was able to achieve up to 100.0% SERT occupancy with clomipramine and up to 93.6% SERT occupancy with fluvoxamine. Other studies have found 83% SERT occupancy with 20 mg/day paroxetine and 77% SERT occupancy with 20 mg/day citalopram. These results indicate that very low doses of clomipramine are able to substantially occupy the SERT and that clomipramine achieves higher occupancy of the SERT than SSRIs at comparable doses. Moreover, clomipramine may be able to achieve more complete occupancy of the SERT at high doses, at least relative to fluvoxamine.

If the ratios of the 80% SERT occupancy dosage and the approved clinical dosage range are calculated and compared for SSRIs, SNRIs, and clomipramine, it can be deduced that clomipramine is by far the strongest SRI used medically. The lowest approved dosage of clomipramine can be estimated to be roughly comparable in SERT occupancy to the maximum approved dosages of the strongest SSRIs and SNRIs. Because their mechanism of action was originally not known and dose-ranging studies were never conducted, first-generation antipsychotics were dramatically overdosed in patients. It has been suggested that the same may have been true for clomipramine and other TCAs.

Obsessive-Compulsive Disorder

Clomipramine was the first drug that was investigated for and found to be effective in the treatment of OCD. In addition, it was the first drug to be approved by the Food and Drug Administration (FDA) in the United States for the treatment of OCD. The effectiveness of clomipramine in the treatment of OCD is far greater than that of other TCAs, which are comparatively weak SRIs; a meta-analysis found pre- versus post-treatment effect sizes of 1.55 for clomipramine relative to a range of 0.67 for imipramine and 0.11 for desipramine. In contrast to other TCAs, studies have found that clomipramine and SSRIs, which are more potent SRIs, have similar effectiveness in the treatment of OCD. However, multiple meta-analyses have found that clomipramine nonetheless retains a significant effectiveness advantage relative to SSRIs; in the same meta-analysis mentioned previously, the effect sizes of SSRIs in the treatment of OCD ranged from 0.81 for fluoxetine to 1.36 for sertraline (relative to 1.55 for clomipramine). However, the effectiveness advantage for clomipramine has not been apparent in head-to-head comparisons of clomipramine versus SSRIs for OCD. The differences in effectiveness findings could be due to differences in methodologies across non-head-to-head studies.

Relatively high doses of SSRIs are needed for effectiveness in the treatment of OCD. Studies have found that high dosages of SSRIs above the normally recommended maximums are significantly more effective in OCD treatment than lower dosages (e.g. 250 to 400 mg/day sertraline versus 200 mg/day sertraline). In addition, the combination of clomipramine and SSRIs has also been found to be significantly more effective in alleviating OCD symptoms, and clomipramine is commonly used to augment SSRIs for this reason. Studies have found that intravenous clomipramine, which is associated with very high circulating concentrations of the drug and a much higher ratio of clomipramine to its metabolite desmethylclomipramine, is more effective than oral clomipramine in the treatment of OCD. There is a case report of complete remission from OCD for approximately one month following a massive overdose of fluoxetine, an SSRI with a uniquely long duration of action. Taken together, stronger serotonin reuptake inhibition has consistently been associated with greater alleviation of OCD symptoms, and since clomipramine, at the clinical dosages in which it is employed, is effectively the strongest SRI used medically, this may underlie its unique effectiveness in the treatment of OCD.

In addition to serotonin reuptake inhibition, clomipramine is also a mild but clinically significant antagonist of the dopamine D1, D2, and D3 receptors at high concentrations. Addition of antipsychotics, which are potent dopamine receptor antagonists, to SSRIs, has been found to significantly augment their effectiveness in the treatment of OCD. As such, besides strong serotonin reuptake inhibition, clomipramine at high doses might also block dopamine receptors to treat OCD symptoms, and this could additionally or alternatively be involved in its possible effectiveness advantage over SSRIs.

Although clomipramine is probably more effective in the treatment of OCD compared to SSRIs, it is greatly inferior to them in terms of tolerability and safety due to its lack of selectivity for the SERT and promiscuous pharmacological activity. In addition, clomipramine has high toxicity in overdose and can potentially result in death, whereas death rarely, if ever, occurs with overdose of SSRIs. It is for these reasons that clomipramine, in spite of potentially superior effectiveness to SSRIs, is now rarely used as a first-line agent in the treatment of OCD, with SSRIs being used as first-line therapies instead and clomipramine generally being reserved for more severe cases and as a second-line agent.

Pharmacokinetics

The oral bioavailability of clomipramine is approximately 50%. Peak plasma concentrations occur around 2-6 hours (with an average of 4.7 hours) after taking clomipramine orally and are in the range of 56-154 ng/mL (178-489 nmol/L). Steady-state concentrations of clomipramine are around 134-532 ng/mL (426-1,690 nmol/L), with an average of 218 ng/mL (692 nmol/L), and are reached after 7 to 14 days of repeated dosing. Steady-state concentrations of the active metabolite, desmethylclomipramine, are around 230-550 ng/mL (730-1,750 nmol/L). The volume of distribution (Vd) of clomipramine is approximately 17 L/kg. It binds approximately 97-98% to plasma proteins, primarily to albumin. Clomipramine is metabolised in the liver mainly by CYP2D6. It has a terminal half-life of 32 hours, and its N-desmethyl metabolite, desmethylclomipramine, has a terminal half-life of approximately 69 hours. Clomipramine is mostly excreted in urine (60%) and faeces (32%).

Chemistry

Clomipramine is a tricyclic compound, specifically a dibenzazepine, and possesses three rings fused together with a side chain attached in its chemical structure. Other dibenzazepine TCAs include imipramine, desipramine, and trimipramine. Clomipramine is a derivative of imipramine with a chlorine atom added to one of its rings and is also known as 3-chloroimipramine. It is a tertiary amine TCA, with its side chain-demethylated metabolite desmethylclomipramine being a secondary amine. Other tertiary amine TCAs include amitriptyline, imipramine, dosulepin (dothiepin), doxepin, and trimipramine. The chemical name of clomipramine is 3-(3-chloro-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine and its free base form has a chemical formula of C19H23ClN2 with a molecular weight of 314.857 g/mol. The drug is used commercially almost exclusively as the hydrochloride salt; the free base has been used rarely. The CAS Registry Number of the free base is 303-49-1 and of the hydrochloride is 17321-77-6.

Society and Culture

Generic Names

Clomipramine is the English and French generic name of the drug and its INN, BAN, and DCF, while clomipramine hydrochloride is its USAN, USP, BANM, and JAN. Clomipramina is its generic name in Spanish, Portuguese and Italian and its DCIT, while clomipramin is its generic name in German and clomipraminum is its generic name in Latin.

Brand Names

Clomipramine is marketed throughout the world mainly under the brand names Anafranil and Clomicalm for use in humans and animals, respectively.

Veterinary Uses

In the US, clomipramine is only licensed to treat separation anxiety in dogs for which it is sold under the brand name Clomicalm. It has proven effective in the treatment of OCD in cats and dogs. In dogs, it has also demonstrated similar efficacy to fluoxetine in treating tail chasing. In dogs some evidence suggests its efficacy in treating noise phobia.

Clomipramine has also demonstrated efficacy in treating urine spraying in cats. Various studies have been done on the effects of clomipramine on cats to reduce urine spraying/marking behaviour. It has been shown to be able to reduce this behaviour by up to 75% in a trial period of four weeks.