What is Opipramol?

Introduction

Opipramol, sold under the brand name Insidon among others, is an anxiolytic and tricyclic antidepressant (TCA) that is used throughout Europe. Despite chemically being a tricyclic dibenzazepine (iminostilbene) derivative similar to imipramine, opipramol is not a monoamine reuptake inhibitor like most other TCAs, and instead acts primarily as a sigma-1 receptor agonist. It was developed by Schindler and Blattner in 1961.

Brief History

Opipramol was developed by Geigy. It first appeared in the literature in 1952 and was patented in 1961. The drug was first introduced for use in medicine in 1961. Opipramol was one of the first TCAs to be introduced, with imipramine marketed in the 1950s and amitriptyline marketed in 1961.

Medical Uses

Opipramol is typically used in the treatment of generalised anxiety disorder (GAD) and somatoform disorders. Preliminary studies suggest that opipramol shows potential clinical significance in the treatment of severe sleep bruxism.

Contraindications

  • In patients with hypersensitivity to opipramol or another component of the formulation
  • Acute alcohol, sedative, analgesic, and antidepressant intoxications
  • Acute urinary retention
  • Acute delirium
  • Untreated narrow-angle glaucoma
  • Benign prostatic hyperplasia with residual urinary retention
  • Paralytic ileus
  • Pre-existing higher-grade atrioventricular blockages or diffuse supraventricular or ventricular stimulus conduction disturbances
  • Combination with monoamine oxidase inhibitor (MAOI)

Pregnancy and Lactation

Experimental animal studies did not indicate injurious effects of opipramol on the embryonic development or fertility. Opipramol should only be prescribed during pregnancy, particularly in the first trimester, for compelling indication. It should not be used during lactation and breastfeeding, since it passes into breast milk in small quantities.

Side Effects

Frequently (≥1% to <10%) reported adverse reactions with opipramol, especially at the beginning of the treatment, include fatigue, dry mouth, blocked nose, hypotension, and orthostatic dysregulation.

Adverse reactions reported occasionally (≥0.1% to <1%) include dizziness, stupor, micturition disturbances, vigilance, accommodation disturbances, tremor, weight gain, thirst, allergic skin reactions (rash, urticaria), abnormal ejaculation, erectile impotence, constipation, transient increases in liver enzymes, tachycardia, and palpitations.

Rarely (≥0.01% to <0.1%) reported adverse reactions include excitation, headache, paraesthesia especially in elderly patients, restlessness, sweating, sleep disturbances, oedema, galactorrhoea, urine blockage, nausea and vomiting, fever, collapse conditions, stimulation conducting disturbances, intensification of present heart insufficiency, blood profile changes particularly leukopenia, confusion, delirium, stomach complaints, taste disturbance, and paralytic ileus especially with sudden discontinuation of a longer-term high-dose therapy.

Very rarely (<0.01%) reported adverse reactions include seizures, motor disorders (akathisia, dyskinesia, ataxia), polyneuropathy, glaucoma, anxiety, hair loss, agranulocytosis, severe liver dysfunction after long-term treatment, jaundice, and chronic liver damage.

Overdose

Symptoms of intoxication from overdose include drowsiness, insomnia, stupor, agitation, coma, transient confusion, increased anxiety, ataxia, convulsions, oliguria, anuria, tachycardia or bradycardia, arrhythmia, AV block, hypotension, shock, respiratory depression, and, rarely, cardiac arrest.

Interactions

While opipramol is not a monoamine reuptake inhibitor, any irreversible MAOIs should still be discontinued at least 14 days before treatment. Opipramol can compete with other tricyclic antidepressants, beta blockers, antiarrhythmics (of class 1c), and other drugs for microsomal enzymes, which can lead to slower metabolism and higher plasma concentrations of these drugs. Co-administration of antipsychotics (e.g., haloperidol, risperidone) can increase the plasma concentration of opipramol. Barbiturates and anticonvulsants can reduce the plasma concentration of opipramol and thereby weaken its therapeutic effect.[3]

Pharmacology

Pharmacodynamics

Opipramol acts as a high affinity sigma receptor agonist, primarily of the σ1 subtype, but also of the σ2 subtype with lower affinity. In one study of σ1 receptor ligands that also included haloperidol, pentazocine, (+)-3-PPP, ditolylguanidine, dextromethorphan, SKF-10,047 ((±)-alazocine), ifenprodil, progesterone, and others, opipramol showed the highest affinity (Ki = 0.2–0.3) for the guinea pig σ1 receptor of all the tested ligands except haloperidol, which it was approximately equipotent with. The sigma receptor agonism of opipramol is thought to be responsible for its therapeutic benefits against anxiety and depression.

Unlike other TCAs, opipramol does not inhibit the reuptake of serotonin or norepinephrine. However, it does act as a high affinity antagonist of the histamine H1 receptor and is a low to moderate affinity antagonist of the dopamine D2, serotonin 5-HT2, and α1-adrenergic receptors. H1 receptor antagonism accounts for its antihistamine effects and associated sedative side effects. In contrast to other TCAs, opipramol has very low affinity for the muscarinic acetylcholine receptors and virtually no anticholinergic effects.

Sigma receptors are a set of proteins located in the endoplasmic reticulum. σ1 receptors play key role in potentiating intracellular calcium mobilisation thereby acting as sensor or modulator of calcium signalling. Occupancy of σ1 receptors by agonists causes translocation of the receptor from endoplasmic reticulum to peripheral areas (membranes) where the σ1 receptors cause neurotransmitter release. Opipramol is said to have a biphasic action, with prompt initial improvement of tension, anxiety, and insomnia followed by improved mood later. Hence, it is an anxiolytic with an antidepressant component. After sub-chronic treatment with opipramol, σ2 receptors are significantly downregulated but σ1 receptors are not.

Pharmacokinetics

Opipramol is rapidly and completely absorbed by the gastrointestinal tract. The bioavailability of opipramol amounts to 94%. After single oral administration of 50 mg, the peak plasma concentration of the drug is reached after 3.3 hours and amounts to 15.6 ng/mL. After single oral administration of 100 mg the maximum plasma concentration is reached after 3 hours and amounts to 33.2 ng/mL. Therapeutic concentrations of opipramol range from 140 to 550 nmol/L. The plasma protein binding amounts to approximately 91% and the volume of distribution is approximately 10 L/kg. Opipramol is partially metabolised in the liver to deshydroxyethylopipramol. Metabolism occurs through the CYP2D6 isoenzyme. Its terminal half-life in plasma is 6–11 hours. About 70% is eliminated in urine with 10% unaltered. The remaining portion is eliminated through faeces.

Society and Culture

Generic Names

Opipramol is the English, German, French, and Spanish generic name of the drug and its INNTooltip International Nonproprietary Name, BANTooltip British Approved Name, and DCFTooltip Dénomination Commune Française, while opipramol hydrochloride is its USANTooltip United States Adopted Name, BANMTooltip British Approved Name, and JANTooltip Japanese Accepted Name. Its generic name in Italian and its DCITTooltip Denominazione Comune Italiana is opipramolo and in Latin is opipramolum.

Brand Names

Opipramol is marketed under the brand names Deprenil, Dinsidon, Ensidon, Insidon, Insomin, Inzeton, Nisidana, Opipram, Opramol, Oprimol, Pramolan, and Sympramol among others.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Opipramol >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Ipspirone?

Introduction

Ipsapirone is a selective 5-HT1A receptor partial agonist of the piperazine and azapirone chemical classes.

Outline

It has antidepressant and anxiolytic effects.

Ipsapirone was studied in several placebo-controlled trials for depression and continues to be used in research.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Ipsapirone >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Flesinoxan?

Introduction

Flesinoxan (DU-29,373) is a potent and selective 5-HT1A receptor partial/near-full agonist of the phenylpiperazine class.

Outline

Originally developed as a potential antihypertensive drug, flesinoxan was later found to possess antidepressant and anxiolytic effects in animal tests. As a result, it was investigated in several small human pilot studies for the treatment of major depressive disorder (MDD), and was found to have robust effectiveness and very good tolerability. However, due to “management decisions”, the development of flesinoxan was stopped and it was not pursued any further.

In patients, flesinoxan enhances REM sleep latency, decreases body temperature, and increases ACTH, cortisol, prolactin, and growth hormone secretion.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Flesinoxan >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Enciprazine?

Introduction

Enciprazine (INN, BAN; enciprazine hydrochloride (USAN); developmental code names WY-48624, D-3112) is an anxiolytic and antipsychotic of the phenylpiperazine class which was never marketed.

It shows high affinity for the α1-adrenergic receptor and 5-HT1A receptor, among other sites.

The drug was initially anticipated to produce ortho-methoxyphenylpiperazine (oMeOPP), a serotonin receptor agonist with high affinity for the 5-HT1A receptor, as a significant active metabolite, but subsequent research found this not to be the case.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Enciprazine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Flesinoxan?

Introduction

Flesinoxan (DU-29,373) is a potent and selective 5-HT1A receptor partial/near-full agonist of the phenylpiperazine class. Originally developed as a potential antihypertensive drug, flesinoxan was later found to possess antidepressant and anxiolytic effects in animal tests.

As a result, it was investigated in several small human pilot studies for the treatment of major depressive disorder, and was found to have robust effectiveness and very good tolerability. However, due to “management decisions”, the development of flesinoxan was stopped and it was not pursued any further.

In patients, flesinoxan enhances REM sleep latency, decreases body temperature, and increases ACTH, cortisol, prolactin, and growth hormone secretion.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Flesinoxan >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Azapirone?

Introduction

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

List of Azapirones

The azapirones include the following agents:

Anxiolytics

Antipsychotics

Others

  • SNAP-8719 (CAS number: 255893-38-0 )
  • CID:14086451

Medical Uses

Azapirones have shown benefit in general anxiety and augmenting SSRIs in social anxiety and depression. Evidence is not clear for panic disorder and functional gastrointestinal disorders.

Tandospirone has also been used to augment antipsychotics in Japan as it improves cognitive and negative symptoms of schizophrenia. Buspirone is being investigated for this purpose as well.

Side Effects

Side effects of azapirones may include dizziness, headaches, restlessness, nausea, and diarrhoea.

Azapirones have more tolerable adverse effects than many other available anxiolytics, such as benzodiazepines or SSRIs. Unlike benzodiazepines, azapirones lack abuse potential and are not addictive, do not cause cognitive/memory impairment or sedation, and do not appear to induce appreciable tolerance or physical dependence. However, azapirones are considered less effective with slow onset in controlling symptoms.

Chemistry

Buspirone was originally classified as an azaspirodecanedione, shortened to azapirone or azaspirone due to the fact that its chemical structure contained this moiety, and other drugs with similar structures were labelled as such as well. However, despite all being called azapirones, not all of them actually contain the azapirodecanedione component, and most in fact do not or contain a variation of it. Additionally, many azapirones are also pyrimidinylpiperazines, though again this does not apply to them all.

Drugs classed as azapirones can be identified by their -spirone or -pirone suffix.

Pharmacology

Pharmacodynamics

On a pharmacological level, azapirones varyingly possess activity at the following receptors:

  • 5-HT1A receptor (as partial or full agonists)
  • 5-HT2A receptor (as inverse agonists)
  • D2 receptor (as antagonists or partial agonists)
  • α1-adrenergic receptor (as antagonists)
  • α2-adrenergic receptor (as antagonists)

Actions at D4, 5-HT2C, 5-HT7, and sigma receptors have also been shown for some azapirones.

While some of the listed properties such as 5-HT2A and D2 blockade may be useful in certain indications such as in the treatment of schizophrenia (as with perospirone and tiospirone), all of them except 5-HT1A agonism are generally undesirable in anxiolytics and only contribute to side effects. As a result, further development has commenced to bring more selective of anxiolytic agents to the market. An example of this initiative is gepirone, which was recently approved after completing clinical trials in the United States for the treatment of major depression and generalised anxiety disorder. Another example is tandospirone which has been licensed in Japan for the treatment of anxiety and as an augmentation to antidepressants for depression.

5-HT1A receptor partial agonists have demonstrated efficacy against depression in rodent studies and human clinical trials. Unfortunately, however, their efficacy is limited and they are only relatively mild antidepressants. Instead of being used as monotherapy treatments, they are more commonly employed as augmentations to serotonergic antidepressants like the SSRIs. It has been proposed that high intrinsic activity at 5-HT1A postsynaptic receptors is necessary for maximal therapeutic benefits to come to prominence, and as a result, investigation has commenced in azapirones which act as 5-HT1A receptor full agonists such as alnespirone and eptapirone. Indeed, in preclinical studies, eptapirone produces robust antidepressant effects which surpass those of even high doses of imipramine and paroxetine.

Pharmacokinetics

Azapirones are poorly but nonetheless appreciably absorbed and have a rapid onset of action, but have only very short half-lives ranging from 1–3 hours. As a result, they must be administered 2–3 times a day. The only exception to this rule is umespirone, which has a very long duration with a single dose lasting as long as 23 hours. Unfortunately, umespirone has not been commercialised. Although never commercially produced, Bristol-Myers Squibb applied for a patent on 28 October 1993, and received the patent on 11 July 1995, for an extended release formulation of buspirone. An extended release formulation of gepirone is currently under development and if approved, should help to improve this issue.

Metabolism of azapirones occurs in the liver and they are excreted in urine and feces. A common metabolite of several azapirones including buspirone, gepirone, ipsapirone, revospirone, and tandospirone is 1-(2-pyrimidinyl)piperazine (1-PP). 1-PP possesses 5-HT1A partial agonist and α2-adrenergic antagonist actions and likely contributes overall mostly to side effects.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Azapirone >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Azapirone?

Introduction

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics.

They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

List of Azapirones

The azapirones include the following agents:

  • Others:
    • SNAP-8719 (CAS number: 255893-38-0 )

Medical Uses

Azapirones have shown benefit in general anxiety and augmenting SSRIs in social anxiety and depression. Evidence is not clear for panic disorder and functional gastrointestinal disorders.

Tandospirone has also been used to augment antipsychotics in Japan as it improves cognitive and negative symptoms of schizophrenia. Buspirone is being investigated for this purpose as well.

Side Effects

Side effects of azapirones may include dizziness, headaches, restlessness, nausea, and diarrhoea.

Azapirones have more tolerable adverse effects than many other available anxiolytics, such as benzodiazepines or SSRIs. Unlike benzodiazepines, azapirones lack abuse potential and are not addictive, do not cause cognitive/memory impairment or sedation, and do not appear to induce appreciable tolerance or physical dependence. However, azapirones are considered less effective with slow onset in controlling symptoms.

Chemistry

Buspirone was originally classified as an azaspirodecanedione, shortened to azapirone or azaspirone due to the fact that its chemical structure contained this moiety, and other drugs with similar structures were labelled as such as well. However, despite all being called azapirones, not all of them actually contain the azapirodecanedione component, and most in fact do not or contain a variation of it. Additionally, many azapirones are also pyrimidinylpiperazines, though again this does not apply to them all.

Drugs classed as azapirones can be identified by their -spirone or -pirone suffix.

Pharmacology

Pharmacodynamics

On a pharmacological level, azapirones varyingly possess activity at the following receptors:

  • 5-HT1A receptor (as partial or full agonists)
  • 5-HT2A receptor (as inverse agonists)
  • D2 receptor (as antagonists or partial agonists)
  • α1-adrenergic receptor (as antagonists)
  • α2-adrenergic receptor (as antagonists)

Actions at D4, 5-HT2C, 5-HT7, and sigma receptors have also been shown for some azapirones.

While some of the listed properties such as 5-HT2A and D2 blockade may be useful in certain indications such as in the treatment of schizophrenia (as with perospirone and tiospirone), all of them except 5-HT1A agonism are generally undesirable in anxiolytics and only contribute to side effects. As a result, further development has commenced to bring more selective of anxiolytic agents to the market. An example of this initiative is gepirone, which was recently approved after completing clinical trials in the United States for the treatment of major depression and generalized anxiety disorder. Another example is tandospirone which has been licensed in Japan for the treatment of anxiety and as an augmentation to antidepressants for depression.

5-HT1A receptor partial agonists have demonstrated efficacy against depression in rodent studies and human clinical trials. Unfortunately, however, their efficacy is limited and they are only relatively mild antidepressants. Instead of being used as monotherapy treatments, they are more commonly employed as augmentations to serotonergic antidepressants like the SSRIs. It has been proposed that high intrinsic activity at 5-HT1A postsynaptic receptors is necessary for maximal therapeutic benefits to come to prominence, and as a result, investigation has commenced in azapirones which act as 5-HT1A receptor full agonists such as alnespirone and eptapirone. Indeed, in preclinical studies, eptapirone produces robust antidepressant effects which surpass those of even high doses of imipramine and paroxetine.

Pharmacokinetics

Azapirones are poorly but nonetheless appreciably absorbed and have a rapid onset of action, but have only very short half-lives ranging from 1–3 hours. As a result, they must be administered 2-3 times a day. The only exception to this rule is umespirone, which has a very long duration with a single dose lasting as long as 23 hours. Unfortunately, umespirone has not been commercialized. Although never commercially produced, Bristol-Myers Squibb applied for a patent on 28 October 1993, and received the patent on 11 July 1995, for an extended release formulation of buspirone. An extended release formulation of gepirone is currently under development and if approved, should help to improve this issue.

Metabolism of azapirones occurs in the liver and they are excreted in urine and faeces. A common metabolite of several azapirones including buspirone, gepirone, ipsapirone, revospirone, and tandospirone is 1-(2-pyrimidinyl)piperazine (1-PP). 1-PP possesses 5-HT1A partial agonist and α2-adrenergic antagonist actions and likely contributes overall mostly to side effects.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Azapirone >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Medifoxamine?

Introduction

Medifoxamine, previously sold under the brand names Clédial and Gerdaxyl, is an atypical antidepressant with additional anxiolytic properties acting via dopaminergic and serotonergic mechanisms which was formerly marketed in France and Spain, as well as Morocco.

The drug was first introduced in France sometime around 1990. It was withdrawn from the market in 1999 (Morocco) and 2000 (France) following incidences of hepatotoxicity.

Pharmacology

Pharmacodynamics

Medifoxamine has been found to act preferentially as a relatively weak dopamine reuptake inhibitor, but also as an even weaker serotonin reuptake inhibitor (IC50 = 1,500 nM) and as a weak antagonist of the 5-HT2A and 5-HT2C receptors (IC50 = 950 and 980, respectively; notably greater affinity relative to amitriptyline and imipramine). It is known to produce two active metabolites during first-pass metabolism in the liver, CRE-10086 (N-methyl-2,2-diphenoxyethylamine) and CRE-10357 (N,N-dimethyl-2-hydroxyphenoxy-2-phenoxyethylamine). The IC50 values of CRE-10086 for serotonin transporter, 5-HT2A, and 5-HT2C binding are 450 nM, 330 nM, and 700 nM, respectively, while those of CRE-10357 are 660 nM, 1,600 nM, and 6,300 M. Medifoxamine and its metabolites lack affinity for other serotonin receptors including 5-HT1A, 5-HT1B, 5-HT1D, and 5-HT3 (>10,000 nM). As medifoxamine is metabolised extensively in the liver during first-pass metabolism, and as these metabolites have as much as 3-fold greater activity relative to medifoxamine, it is likely that they contribute significantly to the pharmacology of the parent drug.

Effectiveness and Tolerability

Unlike many tricyclic antidepressants, medifoxamine lacks anticholinergic and alpha blocker properties (very low affinity for the muscarinic acetylcholine receptors and 10-fold lower affinity for the α1-adrenergic receptor relative to 5-HT2 binding sites), and is also apparently inactive as a norepinephrine reuptake inhibitor (although the same source stating this also states that it is inactive as a serotonin reuptake inhibitor, which was subsequently found not to be the case). Studies in mice revealed that the drug does not possess any sedative or locomotor stimulant effects. In accordance with all of the preceding, medifoxamine was found to be well tolerated at dosages of 100–300 mg per day in clinical trials. Double-blind controlled clinical studies have found it to have similar effectiveness to imipramine, clomipramine, and maprotiline in the treatment of depression.

Society and Culture

Generic Names

Medifoxamine is the generic name of the drug and its INN while médifoxamine is its DCF.

Brand Names

Medifoxamine was marketed under the brand names Clédial and Gerdaxyl.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Medifoxamine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Medazepam?

Introduction

Medazepam is a drug that is a benzodiazepine derivative. It possesses anxiolytic, anticonvulsant, sedative, and skeletal muscle relaxant properties. It is known by the following brand names: Azepamid, Nobrium, Tranquirax (mixed with bevonium), Rudotel, Raporan, Ansilan and Mezapam. Medazepam is a long-acting benzodiazepine drug. The half-life of medazepam is 36–200 hours.

Pharmacology

Medazepam acts as a prodrug to diazepam, as well as nordazepam, temazepam and oxazepam. Benzodiazepine drugs including medazepam increase the inhibitory processes in the cerebral cortex by allosteric modulation of the GABA receptor. Benzodiazepines may also act via micromolar benzodiazepine-binding sites as Ca2+ channel blockers and significantly inhibited depolarisation-sensitive calcium uptake in experiments with cell components from rat brains. This has been conjectured as a mechanism for high dose effects against seizures in a study. It has major active benzodiazepine metabolites, which gives it a more prolonged therapeutic effect after administration.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Medazepam >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Meclonazepam?

Introduction

Meclonazepam-3-methylclonazepam) was discovered by a team at Hoffmann-La Roche in the 1970s and is a drug which is a benzodiazepine derivative similar in structure to clonazepam. It has sedative and anxiolytic actions like those of other benzodiazepines, and also has anti-parasitic effects against the parasitic worm Schistosoma mansoni.

Meclonazepam was never used as medicine and instead appeared online as a designer drug.

Legal Issues

United Kingdom

In the UK, meclonazepam has been classified as a Class C drug by the May 2017 amendment to The Misuse of Drugs Act 1971 along with several other designer benzodiazepine drugs.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Meclonazepam >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.