What is Opipramol?

Introduction

Opipramol, sold under the brand name Insidon among others, is an anxiolytic and tricyclic antidepressant (TCA) that is used throughout Europe. Despite chemically being a tricyclic dibenzazepine (iminostilbene) derivative similar to imipramine, opipramol is not a monoamine reuptake inhibitor like most other TCAs, and instead acts primarily as a sigma-1 receptor agonist. It was developed by Schindler and Blattner in 1961.

Brief History

Opipramol was developed by Geigy. It first appeared in the literature in 1952 and was patented in 1961. The drug was first introduced for use in medicine in 1961. Opipramol was one of the first TCAs to be introduced, with imipramine marketed in the 1950s and amitriptyline marketed in 1961.

Medical Uses

Opipramol is typically used in the treatment of generalised anxiety disorder (GAD) and somatoform disorders. Preliminary studies suggest that opipramol shows potential clinical significance in the treatment of severe sleep bruxism.

Contraindications

  • In patients with hypersensitivity to opipramol or another component of the formulation
  • Acute alcohol, sedative, analgesic, and antidepressant intoxications
  • Acute urinary retention
  • Acute delirium
  • Untreated narrow-angle glaucoma
  • Benign prostatic hyperplasia with residual urinary retention
  • Paralytic ileus
  • Pre-existing higher-grade atrioventricular blockages or diffuse supraventricular or ventricular stimulus conduction disturbances
  • Combination with monoamine oxidase inhibitor (MAOI)

Pregnancy and Lactation

Experimental animal studies did not indicate injurious effects of opipramol on the embryonic development or fertility. Opipramol should only be prescribed during pregnancy, particularly in the first trimester, for compelling indication. It should not be used during lactation and breastfeeding, since it passes into breast milk in small quantities.

Side Effects

Frequently (≥1% to <10%) reported adverse reactions with opipramol, especially at the beginning of the treatment, include fatigue, dry mouth, blocked nose, hypotension, and orthostatic dysregulation.

Adverse reactions reported occasionally (≥0.1% to <1%) include dizziness, stupor, micturition disturbances, vigilance, accommodation disturbances, tremor, weight gain, thirst, allergic skin reactions (rash, urticaria), abnormal ejaculation, erectile impotence, constipation, transient increases in liver enzymes, tachycardia, and palpitations.

Rarely (≥0.01% to <0.1%) reported adverse reactions include excitation, headache, paraesthesia especially in elderly patients, restlessness, sweating, sleep disturbances, oedema, galactorrhoea, urine blockage, nausea and vomiting, fever, collapse conditions, stimulation conducting disturbances, intensification of present heart insufficiency, blood profile changes particularly leukopenia, confusion, delirium, stomach complaints, taste disturbance, and paralytic ileus especially with sudden discontinuation of a longer-term high-dose therapy.

Very rarely (<0.01%) reported adverse reactions include seizures, motor disorders (akathisia, dyskinesia, ataxia), polyneuropathy, glaucoma, anxiety, hair loss, agranulocytosis, severe liver dysfunction after long-term treatment, jaundice, and chronic liver damage.

Overdose

Symptoms of intoxication from overdose include drowsiness, insomnia, stupor, agitation, coma, transient confusion, increased anxiety, ataxia, convulsions, oliguria, anuria, tachycardia or bradycardia, arrhythmia, AV block, hypotension, shock, respiratory depression, and, rarely, cardiac arrest.

Interactions

While opipramol is not a monoamine reuptake inhibitor, any irreversible MAOIs should still be discontinued at least 14 days before treatment. Opipramol can compete with other tricyclic antidepressants, beta blockers, antiarrhythmics (of class 1c), and other drugs for microsomal enzymes, which can lead to slower metabolism and higher plasma concentrations of these drugs. Co-administration of antipsychotics (e.g., haloperidol, risperidone) can increase the plasma concentration of opipramol. Barbiturates and anticonvulsants can reduce the plasma concentration of opipramol and thereby weaken its therapeutic effect.[3]

Pharmacology

Pharmacodynamics

Opipramol acts as a high affinity sigma receptor agonist, primarily of the σ1 subtype, but also of the σ2 subtype with lower affinity. In one study of σ1 receptor ligands that also included haloperidol, pentazocine, (+)-3-PPP, ditolylguanidine, dextromethorphan, SKF-10,047 ((±)-alazocine), ifenprodil, progesterone, and others, opipramol showed the highest affinity (Ki = 0.2–0.3) for the guinea pig σ1 receptor of all the tested ligands except haloperidol, which it was approximately equipotent with. The sigma receptor agonism of opipramol is thought to be responsible for its therapeutic benefits against anxiety and depression.

Unlike other TCAs, opipramol does not inhibit the reuptake of serotonin or norepinephrine. However, it does act as a high affinity antagonist of the histamine H1 receptor and is a low to moderate affinity antagonist of the dopamine D2, serotonin 5-HT2, and α1-adrenergic receptors. H1 receptor antagonism accounts for its antihistamine effects and associated sedative side effects. In contrast to other TCAs, opipramol has very low affinity for the muscarinic acetylcholine receptors and virtually no anticholinergic effects.

Sigma receptors are a set of proteins located in the endoplasmic reticulum. σ1 receptors play key role in potentiating intracellular calcium mobilisation thereby acting as sensor or modulator of calcium signalling. Occupancy of σ1 receptors by agonists causes translocation of the receptor from endoplasmic reticulum to peripheral areas (membranes) where the σ1 receptors cause neurotransmitter release. Opipramol is said to have a biphasic action, with prompt initial improvement of tension, anxiety, and insomnia followed by improved mood later. Hence, it is an anxiolytic with an antidepressant component. After sub-chronic treatment with opipramol, σ2 receptors are significantly downregulated but σ1 receptors are not.

Pharmacokinetics

Opipramol is rapidly and completely absorbed by the gastrointestinal tract. The bioavailability of opipramol amounts to 94%. After single oral administration of 50 mg, the peak plasma concentration of the drug is reached after 3.3 hours and amounts to 15.6 ng/mL. After single oral administration of 100 mg the maximum plasma concentration is reached after 3 hours and amounts to 33.2 ng/mL. Therapeutic concentrations of opipramol range from 140 to 550 nmol/L. The plasma protein binding amounts to approximately 91% and the volume of distribution is approximately 10 L/kg. Opipramol is partially metabolised in the liver to deshydroxyethylopipramol. Metabolism occurs through the CYP2D6 isoenzyme. Its terminal half-life in plasma is 6–11 hours. About 70% is eliminated in urine with 10% unaltered. The remaining portion is eliminated through faeces.

Society and Culture

Generic Names

Opipramol is the English, German, French, and Spanish generic name of the drug and its INNTooltip International Nonproprietary Name, BANTooltip British Approved Name, and DCFTooltip Dénomination Commune Française, while opipramol hydrochloride is its USANTooltip United States Adopted Name, BANMTooltip British Approved Name, and JANTooltip Japanese Accepted Name. Its generic name in Italian and its DCITTooltip Denominazione Comune Italiana is opipramolo and in Latin is opipramolum.

Brand Names

Opipramol is marketed under the brand names Deprenil, Dinsidon, Ensidon, Insidon, Insomin, Inzeton, Nisidana, Opipram, Opramol, Oprimol, Pramolan, and Sympramol among others.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Opipramol >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Nortiptyline?

Introduction

Nortriptyline, sold under the brand name Aventyl, among others, is a tricyclic antidepressant (TCA). This medicine is also sometimes used for neuropathic pain, attention deficit hyperactivity disorder (ADHD), smoking cessation and anxiety. Its use for young people with depression and other psychiatric disorders may be limited due to increased suicidality in the 18–24 population initiating treatment. Nortriptyline is not a preferred treatment for ADHD or smoking cessation. It is taken by mouth.

Common side effects include dry mouth, constipation, blurry vision, sleepiness, low blood pressure with standing, and weakness. Serious side effects may include seizures, an increased risk of suicide in those less than 25 years of age, urinary retention, glaucoma, mania, and a number of heart issues. Nortriptyline may cause problems if taken during pregnancy. Use during breastfeeding appears to be relatively safe. It is a TCA and is believed to work by altering levels of serotonin and norepinephrine.

Nortriptyline was approved for medical use in the US in 1964. It is available as a generic medication. In 2022, it was the 191st most commonly prescribed medication in the US, with more than 2 million prescriptions.

Brief History

Nortriptyline was developed by Geigy. It first appeared in the literature in 1962 and was patented the same year. The drug was first introduced for the treatment of depression in 1963.

Medical Uses

Nortriptyline is used to treat depression. A level between 50 and 150 ng/mL of nortriptyline in the blood generally corresponds with an antidepressant effect.

It is also used off-label for the treatment of panic disorder, ADHD, irritable bowel syndrome, tobacco-cessation, migraine prophylaxis and chronic pain or neuralgia modification, particularly temporomandibular joint disorder.

Irritable Bowel Syndrome

Nortriptyline has also been used as an off-label treatment for irritable bowel syndrome (IBS).

Contraindications

Nortriptyline should not be used in the acute recovery phase after myocardial infarction (heart attack). Use of TCAs along with a monoamine oxidase inhibitor (MAOI), linezolid, or IV methylene blue are contraindicated as it can cause an increased risk of developing serotonin syndrome.

Closer monitoring is required for those with a history of cardiovascular disease, stroke, glaucoma, or seizures, as well as in persons with hyperthyroidism or receiving thyroid hormones.

Side Effects

The most common side effects include dry mouth, sedation, constipation, increased appetite, blurred vision and tinnitus. An occasional side effect is a rapid or irregular heartbeat. Alcohol may exacerbate some of its side effects.

Overdose

Refer to Tricyclic Antidepressant Overdose.

The symptoms and the treatment of an overdose are generally the same as for the other TCAs, including anticholinergic effects, serotonin syndrome and adverse cardiac effects. TCAs, particularly nortriptyline, have a relatively narrow therapeutic index, which increase the chance of an overdose (both accidental and intentional). Symptoms of overdose include: irregular heartbeat, seizures, coma, confusion, hallucination, widened pupils, drowsiness, agitation, fever, low body temperature, stiff muscles and vomiting.

Interactions

Excessive consumption of alcohol in combination with nortriptyline therapy may have a potentiating effect, which may lead to the danger of increased suicidal attempts or overdosage, especially in patients with histories of emotional disturbances or suicidal ideation.

It may interact with the following drugs:

  • Heart rhythm medications such as flecainide (Tambocor), propafenone (Rhythmol), or quinidine (Cardioquin, Quinidex, Quinaglute)
  • Cimetidine
  • Guanethidine
  • Reserpine

Pharmacology

Nortriptyline is a strong norepinephrine reuptake inhibitor and a moderate serotonin reuptake inhibitor. Additionally, nortriptyline inhibits the activity of histamine and acetylcholine.

Pharmacodynamics

Nortriptyline is an active metabolite of amitriptyline by demethylation in the liver. Chemically, it is a secondary amine dibenzocycloheptene and pharmacologically it is classed as a first-generation antidepressant.

Nortriptyline may also have a sleep-improving effect due to antagonism of the H1 and 5-HT2A receptors. In the short term, however, nortriptyline may disturb sleep due to its activating effect.

In one study, nortriptyline had the highest affinity for the dopamine transporter among the TCAs (KD = 1,140 nM) besides amineptine (a norepinephrine–dopamine reuptake inhibitor), although its affinity for this transporter was still 261- and 63-fold lower than for the norepinephrine and serotonin transporters (KD = 4.37 and 18 nM, respectively).

Pharmacogenetics

Nortriptyline is metabolised in the liver by the hepatic enzyme CYP2D6, and genetic variations within the gene coding for this enzyme can affect its metabolism, leading to changes in the concentrations of the drug in the body. Increased concentrations of nortriptyline may increase the risk for side effects, including anticholinergic and nervous system adverse effects, while decreased concentrations may reduce the drug’s efficacy.

Individuals can be categorised into different types of CYP2D6 metabolisers depending on which genetic variations they carry. These metaboliser types include poor, intermediate, extensive, and ultrarapid metabolisers. Most individuals (about 77–92%) are extensive metabolisers, and have “normal” metabolism of nortriptyline. Poor and intermediate metabolisers have reduced metabolism of the drug as compared to extensive metabolisers; patients with these metaboliser types may have an increased probability of experiencing side effects. Ultrarapid metabolisers use nortriptyline much faster than extensive metabolisers; patients with this metaboliser type may have a greater chance of experiencing pharmacological failure.

The Clinical Pharmacogenetics Implementation Consortium recommends avoiding nortriptyline in persons who are CYP2D6 ultrarapid or poor metabolisers, due to the risk of a lack of efficacy and side effects, respectively. A reduction in starting dose is recommended for patients who are CYP2D6 intermediate metabolisers. If use of nortriptyline is warranted, therapeutic drug monitoring is recommended to guide dose adjustments. The Dutch Pharmacogenetics Working Group recommends reducing the dose of nortriptyline in CYP2D6 poor or intermediate metabolisers, and selecting an alternative drug or increasing the dose in ultrarapid metabolisers.

Chemistry

Nortriptyline is a tricyclic compound, specifically a dibenzocycloheptadiene, and possesses three rings fused together with a side chain attached in its chemical structure. Other dibenzocycloheptadiene tricyclic antidepressants include amitriptyline (N-methylnortriptyline), protriptyline, and butriptyline. Nortriptyline is a secondary amine tricyclic antidepressant, with its N-methylated parent amitriptyline being a tertiary amine. Other secondary amine tricyclic antidepressants include desipramine and protriptyline. The chemical name of nortriptyline is 3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-N-methyl-1-propanamine and its free base form has a chemical formula of C19H21N1 with a molecular weight of 263.384 g/mol. The drug is used commercially mostly as the hydrochloride salt; the free base form is used rarely. The CAS Registry Number of the free base is 72-69-5 and of the hydrochloride is 894-71-3.

Society and Culture

Generic Names

Nortriptyline is the generic name of the drug and its INNTooltip International Nonproprietary Name, BANTooltip British Approved Name, and DCFTooltip Dénomination Commune Française, while nortriptyline hydrochloride is its USANTooltip United States Adopted Name, USPTooltip United States Pharmacopeia, BANMTooltip British Approved Name, and JANTooltip Japanese Accepted Name. Its generic name in Spanish and Italian and its DCITTooltip Denominazione Comune Italiana are nortriptilina, in German is nortriptylin, and in Latin is nortriptylinum.

Brand Names

Brand names of nortriptyline include Allegron, Aventyl, Noritren, Norpress, Nortrilen, Norventyl, Norzepine, Pamelor, and Sensival, among many others.

Research

Although not approved by the US Food and Drug Administration (FDA) for neuropathic pain, randomised controlled trials have demonstrated the effectiveness of TCAs for the treatment of this condition in both depressed and non-depressed individuals. In 2010, an evidence-based guideline sponsored by the International Association for the Study of Pain recommended nortriptyline as a first-line medication for neuropathic pain. However, in a 2015 Cochrane systematic review the authors did not recommend nortriptyline as a first-line agent for neuropathic pain.

It may be effective in the treatment of tobacco-cessation.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Nortriptyline >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Iprindole?

Introduction

Iprindole, sold under the brand names Prondol, Galatur, and Tertran, is an atypical tricyclic antidepressant (TCA) that has been used in the United Kingdom and Ireland for the treatment of depression but appears to no longer be marketed.

It was developed by Wyeth and was marketed in 1967. The drug has been described by some as the first “second-generation” antidepressant to be introduced. However, it was very little-used compared to other TCAs, with the number of prescriptions dispensed only in the thousands.

Medical Uses

Iprindole was used in the treatment of major depressive disorder in dosages similar to those of other TCAs.

Contraindications

Iprindole has been associated with jaundice and hepatotoxicity and should not be taken by alcoholics or people with pre-existing liver disease. If such symptoms are encountered iprindole should be discontinued immediately.

Side Effects

Anticholinergic side effects such as dry mouth and constipation are either greatly reduced in comparison to imipramine and most other TCAs or fully lacking with iprindole. However, it still has significant antihistamine effects and therefore can produce sedation, though this is diminished relative to other TCAs similarly. Iprindole also lacks significant alpha-blocking properties, and hence does not pose a risk of orthostatic hypotension.

Overdose

Refer to Tricyclic Antidepressant Overdose.

In overdose, iprindole is much less toxic than most other TCAs and is considered relatively benign. For instance, between 1974 and 1985, only two deaths associated with iprindole were recorded in the United Kingdom, whereas 278 were reported for imipramine, although imipramine is used far more often than iprindole.

Interactions

Iprindole has been shown to be a potent inhibitor of the aromatic hydroxylation and/or N-dealkylation-mediated metabolism of many substances including, but not limited to octopamine, amphetamine, methamphetamine, fenfluramine, phenelzine, tranylcypromine, trimipramine, and fluoxetine, likely via inactivating cytochrome P450 enzymes. It also inhibits its own metabolism.

On account of these interactions, caution should be used when combining iprindole with other drugs. As an example, when administered with amphetamine or methamphetamine, iprindole increases their brain concentrations and prolongs their terminal half-lives by 2- to 3-fold, strongly augmenting both their physiological effects and neurotoxicity in the process.

Pharmacology

Pharmacodynamics

Iprindole is unique compared to most other TCAs in that it is a very weak and negligible inhibitor of the reuptake of serotonin and norepinephrine and appears to act instead as a selective albeit weak antagonist of 5-HT2 receptors; hence its classification by some as “second-generation”.

Additionally, iprindole has very weak/negligible antiadrenergic and anticholinergic activity and weak although possibly significant antihistamine activity; as such, side effects of iprindole are much less prominent relative to other TCAs, and it is well tolerated. However, iprindole may not be as effective as other TCAs, particularly in terms of anxiolysis. Based on animal research, the antidepressant effects of iprindole may be mediated through downstream dopaminergic mechanisms.

The binding affinities of iprindole for various biological targets are presented in the table to the right. It is presumed to act as an inhibitor or antagonist/inverse agonist of all sites. Considering the range of its therapeutic concentrations (e.g. 63–271 nM at 90 mg/day), only the actions of iprindole on the 5-HT2 and histamine receptors might be anticipated to be of possible clinical significance. However, it is unknown whether these actions are in fact responsible for the antidepressant effects of iprindole. The plasma protein binding of iprindole and hence its free percentage and potentially bioactive concentrations do not seem to be known.

Pharmacokinetics

Only one study appears to have evaluated the pharmacokinetics of iprindole. A single oral dose of 60 mg iprindole to healthy volunteers has been found to achieve mean peak plasma concentrations of 67.1 ng/mL (236 nmol/L) after 2 to 4 hours. The mean terminal half-life of iprindole was 52.5 hours, which is notably much longer than that of other TCAs like amitriptyline and imipramine. Following chronic treatment with 90 mg/day iprindole for 3 weeks, plasma concentrations of the drug ranged between 18 and 77 ng/mL (63–271 nmol/L). Theoretical steady-state concentrations should be reached by 99% within 15 to 20 days of treatment.

Chemistry

Iprindole is a tricyclic compound, specifically a cyclooctaindole (that is, an indole nucleus joined with a cyclooctyl ring), and possesses three rings fused together with a side chain attached in its chemical structure. It is a tertiary amine TCA, although its ring system and pharmacological properties are very different from those of other TCAs. Other tertiary amine TCAs that are similar to iprindole include butriptyline and trimipramine. The chemical name of iprindole is 3-(6,7,8,9,10,11-hexahydro-5H-cycloocta[b]indol-5-yl)-N,N-dimethylpropan-1-amine and its free base form has a chemical formula of C19H28N2 with a molecular weight of 284.439 g/mol. The drug has been used commercially as both the free base and the hydrochloride salt. The CAS Registry Number of the free base is 5560-72-5 and of the hydrochloride is 20432-64-8.

Society and Culture

Generic Names

Iprindole is the English and French generic name of the drug and its INN, USAN, BAN, and DCF, while iprindole hydrochloride is its BANM. Its generic name in Spanish and German is iprindol while its generic name in Latin is iprindolum. Iprindole was originally known unofficially as pramindole.

Brand Names

Iprindole has been marketed under the brand name Prondol by Wyeth in the United Kingdom and Ireland for the indication of major depressive disorder, and has also been sold as Galatur and Tertran by Wyeth.

Availability

Iprindole was previously available in the United Kingdom and Ireland but seems to no longer be available for medical use in any country.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Iprindole >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Doxepin?

Introduction

Doxepin is a medication belonging to the tricyclic antidepressant (TCA) class of drugs used to treat major depressive disorder, anxiety disorders, chronic hives, and insomnia. For hives it is a less preferred alternative to antihistamines. It has a mild to moderate benefit for sleeping problems. It is used as a cream for itchiness due to atopic dermatitis or lichen simplex chronicus.

Common side effects include sleepiness, dry mouth, constipation, nausea, and blurry vision. Serious side effects may include increased risk of suicide in those under the age of 25, mania, and urinary retention. A withdrawal syndrome may occur if the dose is rapidly decreased. Use during pregnancy and breastfeeding is not generally recommended. Although how it works for treating depression remains an area of active inquiry, it may involve increasing the levels of norepinephrine, along with blocking histamine, acetylcholine, and serotonin.

Doxepin was approved for medical use in the United States in 1969. It is available as a generic medication. In 2020, it was the 252nd most commonly prescribed medication in the United States, with more than 1 million prescriptions.

Brief History

Doxepin was discovered in Germany in 1963 and was introduced in the United States as an antidepressant in 1969. It was subsequently approved at very low doses in the United States for the treatment of insomnia in 2010.

Medical Uses

Doxepin is used as a pill to treat major depressive disorder, anxiety disorders, and chronic hives, and for short-term help with trouble remaining asleep after going to bed (a form of insomnia). As a cream it is used for short-term treatment of itchiness caused by atopic dermatitis or lichen simplex chronicus.

Insomnia

Doxepin is used in the treatment of insomnia. In 2016, the American College of Physicians advised that insomnia be treated first by treating comorbid conditions, then with cognitive behavioural therapy and behavioural changes, and then with drugs; doxepin was among those recommended for short-term help maintaining sleep, on the basis of weak evidence. The 2017 American Academy of Sleep Medicine recommendations focused on treatment with drugs were similar. A 2015 Agency for Healthcare Research and Quality review of treatments for insomnia had similar findings.

A major systematic review and network meta-analysis of medications for the treatment of insomnia published in 2022 found that doxepin had an effect size (standardized mean difference (SMD)) against placebo for treatment of insomnia at 4 weeks of 0.30 (95% CI –0.05 to 0.64). The certainty of evidence was rated as very low, and no data were available for longer-term treatment (3 months). For comparison, the other sedating antihistamines assessed, trimipramine and doxylamine, had effect sizes (SMD) at 4 weeks of 0.55 (95% CI –0.11 to 1.21) (very low certainty evidence) and 0.47 (95% CI 0.06 to 0.89) (moderate certainty evidence), respectively. Benzodiazepines and Z-drugs generally showed larger effect sizes (e.g. SMDs of 0.45 to 0.83) than doxepin, whereas the effect sizes of orexin receptor antagonists, such as suvorexant, were more similar (SMDs of 0.23 to 0.44).

Doses of doxepin used for sleep normally range from 3 to 6 mg, but high doses of up to 25 to 50 mg may be used as well.

Other Uses

A 2010 review found that topical doxepin is useful to treat itchiness.

A 2010 review of treatments for chronic hives found that doxepin had been superseded by better drugs but was still sometimes useful as a second-line treatment.

Contraindications

Known contraindications include:

  • Hypersensitivities to doxepin, other TCAs, or any of the excipients inside the product used
  • Glaucoma
  • A predisposition to developing urinary retention such as in benign prostatic hyperplasia
  • Use of monoamine oxidase inhibitors in last 14 days

Pregnancy and Lactation

Its use in pregnant and lactating women is advised against, although the available evidence suggests it is unlikely to cause negative effects on foetal development. The lack of evidence from human studies, however, means it is currently impossible to rule out any risk to the foetus and it is known to cross the placenta. Doxepin is secreted in breast milk and neonatal cases of respiratory depression in association with maternal doxepin use have been reported.

Side Effects

Doxepin’s side effects profile may differ from the list below in some countries where it is licensed to be used in much smaller doses (viz., 3 mg and 6 mg).

  • Central nervous system: fatigue, dizziness, drowsiness, lightheadedness, confusion, nightmares, agitation, increased anxiety, difficulty sleeping, seizures (infrequently), temporary confusion (delirium), rarely induction of hypomania and schizophrenia (stop medication immediately), extrapyramidal side effects (rarely), abuse in patients with polytoxicomania (rarely), ringing in the ears (tinnitus)
  • Anticholinergic: dry mouth, constipation, even ileus (rarely), difficulties in urinating, sweating, precipitation of glaucoma
  • Antiadrenergic: Low blood pressure, (if patient arises too fast from the lying/sitting position to standing—known as orthostatic hypotension), abnormal heart rhythms (e.g. sinus tachycardia, bradycardia, and atrioventricular block)
  • Allergic/toxic: skin rash, photosensitivity, liver damage of the cholestatic type (rarely), hepatitis (extremely rare), leuko- or thrombocytopenia (rarely), agranulocytosis (very rarely), hypoplastic anaemia (rarely)
  • Others: frequently increased appetite and weight gain, rarely nausea, rarely high blood pressure. May increase or decrease liver enzyme levels in the blood of some people.

Overdose

Refer to Tricyclic Antidepressant Overdose.

Like other TCAs, doxepin is highly toxic in cases of overdose. Mild symptoms include drowsiness, stupor, blurred vision, and excessive dryness of mouth. More serious adverse effects include respiratory depression, hypotension, coma, convulsions, cardiac arrhythmia, and tachycardia. Urinary retention, decreased gastrointestinal motility (paralytic ileus), hyperthermia (or hypothermia), hypertension, dilated pupils, and hyperactive reflexes are other possible symptoms of doxepin overdose. Management of overdose is mostly supportive and symptomatic, and can include the administration of a gastric lavage so as to reduce absorption of the doxepin. Supportive measures to prevent respiratory aspiration is also advisable. Antiarrhythmic agents may be an appropriate measure to treat cardiac arrhythmias resulting from doxepin overdose. Slow intravenous administration of physostigmine may reverse some of the toxic effects of overdose such as anticholinergic effects. Haemodialysis is not recommended due to the high degree of protein binding with doxepin. ECG monitoring is recommended for several days after doxepin overdose due to the potential for cardiac conduction abnormalities.

Interactions

Doxepin should not be used within 14 days of using a monoamine oxidase inhibitor (MAOI) such as phenelzine due to the potential for hypertensive crisis or serotonin syndrome to develop. Its use in those taking potent CYP2D6 inhibitors such as fluoxetine, paroxetine, sertraline, duloxetine, bupropion, and quinidine is recommended against owing to the potential for its accumulation in the absence of full CYP2D6 catalytic activity. Hepatic enzyme inducers such as carbamazepine, phenytoin, and barbiturates are advised against in patients receiving TCAs like doxepin owing to the potential for problematically rapid metabolism of doxepin to occur in these individuals. Sympathomimetic agents may have their effects potentiated by TCAs like doxepin. Doxepin also may potentiate the adverse effects of anticholinergic agents such as benztropine, atropine and hyoscine (scopolamine). Tolazamide, when used in conjunction with doxepin has been associated with a case of severe hypoglycaemia in a type II diabetic individual. Cimetidine may influence the absorption of doxepin. Alcohol may potentiate some of the CNS depressant effects of doxepin. Antihypertensive agents may have their effects mitigated by doxepin. Cotreatment with CNS depressants such as the benzodiazepines can cause additive CNS depression. Co-treatment with thyroid hormones may also increase the potential for adverse reactions.

Pharmacology

Doxepin is a tricyclic antidepressant (TCA). It acts as a serotonin–norepinephrine reuptake inhibitor (SNRI) (a reuptake inhibitor of serotonin and norepinephrine), with additional antiadrenergic, antihistamine, antiserotonergic, and anticholinergic activities.

Pharmacodynamics

Doxepin is a reuptake inhibitor of serotonin and norepinephrine, or a SNRI, and has additional antiadrenergic, antihistamine, antiserotonergic, and anticholinergic activities. It is specifically an antagonist of the histamine H1 and H2 receptors, the serotonin 5-HT2A and 5-HT2C receptors, the α1-adrenergic receptor, and the muscarinic acetylcholine receptors (M1–M5). Similarly to other TCAs, doxepin is often prescribed as an effective alternative to SSRI medications. Doxepin is also a potent blocker of voltage-gated sodium channels, and this action is thought to be involved in both its lethality in overdose and its effectiveness as an analgesic (including in the treatment of neuropathic pain, and as a local anaesthetic). The potencies of doxepin in terms of its receptor antagonism specifically are as follows:

  • Extremely strong: Histamine H1 receptor
  • Strong: α1-adrenergic receptor, 5-HT2A and muscarinic acetylcholine receptors
  • Moderate: 5-HT2C and 5-HT1A receptors
  • Weak: α2-adrenergic and D2 receptors

Based on its IC50 values for monoamine reuptake inhibition, doxepin is relatively selective for the inhibition of norepinephrine reuptake, with a much weaker effect on the serotonin transporter. Although there is a significant effect that takes place at one of the specific serotonergic binding sites, the 5-HT2A serotonin receptor subtype. There is negligible influence on dopamine reuptake.

The major metabolite of doxepin, nordoxepin (desmethyldoxepin), is pharmacologically active similarly, but relative to doxepin, is much more selective as a norepinephrine reuptake inhibitor. In general, the demethylated variants of tertiary amine TCAs like nordoxepin are much more potent inhibitors of norepinephrine reuptake, less potent inhibitors of serotonin reuptake, and less potent in their antiadrenergic, antihistamine, and anticholinergic activities.

Antidepressant doses of doxepin are defined as 25 to 300 mg/day, although are typically above 75 mg/day. Antihistamine doses, including for dermatological uses and as a sedative/hypnotic for insomnia, are considered to be 3 to 25 mg, although higher doses between 25 and 50 mg and in some cases even up to 150 mg have been used to treat insomnia. At low doses, below 25 mg, doxepin is a pure antihistamine and has more of a sedative effect. At antidepressant doses of above 75 mg, doxepin is more stimulating with antiadrenergic, antiserotonergic, and anticholinergic effects, and these activities contribute to its side effects.

Doxepin is a mixture of (E) and (Z) stereoisomers with an approximate ratio of 85:15. When doxepin was developed, no effort was made to separate or balance the mixture following its synthesis, resulting in the asymmetric ratio. (Z)-Doxepin is more active as an inhibitor of serotonin and norepinephrine reuptake than (E)-doxepin. The selectivity of doxepin for inhibition of norepinephrine reuptake over that of serotonin is likely due to the 85% presence of (E)-doxepin in the mixture. Most other tertiary amine TCAs like amitriptyline and imipramine do not exhibit E-Z isomerism or such mixture asymmetry and are comparatively more balanced inhibitors of serotonin and norepinephrine reuptake.

As a Hypnotic

Doxepin is a highly potent antihistamine, with this being its strongest activity. In fact, doxepin has been said to be the most or one of the most potent H1 receptor antagonists available, with one study finding an in vitro Ki of 0.17 nM. It is the most potent and selective H1 receptor antagonist of the TCAs (although the tetracyclic antidepressant (TeCA) mirtazapine is slightly more potent), and other sedating antihistamines, for instance the over-the-counter diphenhydramine (Ki = 16 nM) and doxylamine (Ki = 42 nM), show far lower affinities for this receptor in comparison. The affinity of doxepin for the H1 receptor is far greater than its affinity for other sites, and 10- to 100-fold higher doses are needed for antidepressant effects. In accordance, although it is often described as a “dirty drug” due to its highly promiscuous binding profile, doxepin acts as a highly selective antagonist of the H1 receptor at very low doses (less than 10 mg; typically 3 to 6 mg). At these doses, it notably has no clinically relevant anticholinergic effects such as dry mouth or cognitive/memory impairment, unlike most other sedating antihistamines, and similarly has no effect on other receptors such as adrenergic and serotonin receptors.

The H1 receptor antagonism of doxepin is responsible for its hypnotic effects and its effectiveness in the treatment of insomnia at low doses. The incidence of side effects with doxepin and its safety at these doses was similar to that of placebo in clinical trials; the most frequent side effects were headache and somnolence/sedation, both with an incidence of less than 5%. Other side effects sometimes associated with antihistamines, including daytime sedation, increased appetite, and weight gain, all were not observed. Clinical evidence of H1 receptor antagonists and TCAs for the treatment insomnia shows mixed effectiveness and is limited in its quality due to weaknesses like small sample sizes and poor generalisability. However, doxepin is a unique and notable exception; it has been well-studied in the treatment of insomnia and shows consistent benefits with excellent tolerability and safety. Aside from diphenhydramine and doxylamine, which have historical approval as hypnotics, doxepin is the only H1 receptor antagonist that is specifically approved for the treatment of insomnia in the United States.

The effect sizes of very low-dose doxepin in the treatment of insomnia range from small to medium. These include subjective and objective measures of sleep maintenance, sleep duration, and sleep efficiency. Conversely, very low-dose doxepin shows relatively weak effects on sleep initiation and does not significantly separate from placebo on this measure. This is in contrast to benzodiazepines and nonbenzodiazepine (Z-drug) hypnotics, which are additionally effective in improving sleep onset latency. However, it is also in contrast to higher doses of doxepin (50 to 300 mg/day), which have been found to significantly reduce latency to sleep onset. A positive dose–response relationship on sleep measures was observed for doses of doxepin between 1 and 6 mg in clinical studies, whereas the incidence of adverse effects remained constant across this dose range in both young and older adults. However, the incidence of adverse effects appeared to increase with longer treatment duration. A dose of doxepin as low as 1 mg/day was found to significantly improve most of the assessed sleep measures, but unlike the 3 and 6 mg/day doses, was not able to improve wake time during sleep. This, along with greater effect sizes with the higher doses, was likely the basis for the approval of the 3 and 6 mg doses of doxepin for insomnia and not the 1 mg dose.

At very low doses, doxepin has not shown discontinuation or withdrawal effects nor rebound insomnia. Sustained effectiveness without apparent tolerance was demonstrated in clinical studies of up to 12 weeks duration. This appears to be in contrast to over-the-counter antihistamines like diphenhydramine and doxylamine and all other first-generation antihistamines, which are associated with rapid development of tolerance and dependence (by day 3 or 4 of continuous dosing) and loss of hypnotic effectiveness. It is for this reason that, unlike doxepin, they are not recommended for the chronic management of insomnia and are advised for only short-term treatment (i.e. 1 week). It is not entirely clear why doxepin and first-generation antihistamines are different in this regard, but it has been suggested that it may have to do with the lack of selectivity for the H1 receptor of the latter or may have to do with the use of optimal doses. Unlike very-low-dose doxepin, most first-generation antihistamines also have marked anticholinergic activity as well as associated side effects such as dry mouth, constipation, urinary retention, and confusion. This is particularly true in older people, and antihistamines with concomitant anticholinergic effects are not recommended in adults over the age of 65. Anticholinergic activity notably may interfere with the sleep-promoting effects of H1 receptor blockade.

Antagonism of the H1, 5-HT2A, 5-HT2C, and α1-adrenergic receptors is thought to have sleep-promoting effects and to be responsible for the sedative effects of TCAs including those of doxepin. Although doxepin is selective for the H1 receptor at doses lower than 25 mg, blockade of serotonin and adrenergic receptors may also be involved in the hypnotic effects of doxepin at higher doses. However, in contrast to very low doses of doxepin, rebound insomnia and daytime sedation are significantly more frequent than placebo with moderate doses (25 to 50 mg/day) of the drug. In addition, one study found that although such doses of doxepin improved sleep measures initially, most of the benefits were lost with chronic treatment (by 4 weeks). Due to limited data however, more research on potential tolerance and withdrawal effects of moderate doses of doxepin is needed. At these doses of doxepin, dry mouth, an anticholinergic effect, was common (71%), and other side effects such as headache (25%), increased appetite (21%), and dizziness (21%) were also frequently observed, although these adverse effects were notably not significantly more frequent than with placebo in the study in question. In any case, taken together, higher doses of doxepin than very low doses are associated with an increased rate of side effects as well as apparent loss of hypnotic effectiveness with chronic treatment.

Doxepin at a dose of 25 mg/day for 3 weeks has been found to decrease cortisol levels by 16% in adults with chronic insomnia and to increase melatonin production by 26% in healthy volunteers. In individuals with neuroendocrine dysregulation in the form of nocturnal melatonin deficiency presumably due to chronic insomnia, very-low-dose doxepin was found to restore melatonin levels to near-normal values after 3 weeks of treatment. These findings suggest that normalization of the hypothalamic–pituitary–adrenal axis and the circadian sleep–wake cycle may be involved in the beneficial effects of doxepin on sleep and insomnia.

CYP2D6 Inhibition

Doxepin has been identified as an inhibitor of CYP2D6 in vivo in a study of human patients being treated with 75 to 250 mg/day for depression. While it significantly altered metabolic ratios for sparteine and its metabolites, doxepin did not convert any of the patients to a different metabolizer phenotype (e.g. extensive to intermediate or poor). Nonetheless, inhibition of CYP2D6 by doxepin could be of clinical importance.

Pharmacokinetics

Absorption

Doxepin is well-absorbed from the gastrointestinal tract but between 55 and 87% undergoes first-pass metabolism in the liver, resulting in a mean oral bioavailability of approximately 29%. Following a single very low dose of 6 mg, peak plasma levels of doxepin are 0.854 ng/mL (3.06 nmol/L) at 3 hours without food and 0.951 ng/mL (3.40 nmol/L) at 6 hours with food. Plasma concentrations of doxepin with antidepressant doses are far greater, ranging between 50 and 250 ng/mL (180 to 900 nmol/L). Area-under-curve levels of the drug are increased significantly when it is taken with food.

Distribution

Doxepin is widely distributed throughout the body and is approximately 80% plasma protein-bound, specifically to albumin and α1-acid glycoprotein.

Metabolism

Doxepin is extensively metabolized by the liver via oxidation and N-demethylation. Its metabolism is highly stereoselective. Based on in vitro research, the major enzymes involved in the metabolism of doxepin are the cytochrome P450 enzymes CYP2D6 and CYP2C19, with CYP1A2, CYP2C9, and CYP3A4 also involved to a lesser extent. The major active metabolite of doxepin, nordoxepin, is formed mainly by CYP2C19 (>50% contribution), while CYP1A2 and CYP2C9 are involved to a lesser extent, and CYP2D6 and CYP3A4 are not involved. Both doxepin and nordoxepin are hydroxylated mainly by CYP2D6, and both doxepin and nordoxepin are also transformed into glucuronide conjugates. The elimination half-life of doxepin is about 15–18 hours, whereas that of nordoxepin is around 28–31 hours. Up to 10% of Caucasian individuals show substantially reduced metabolism of doxepin that can result in up to 8-fold elevated plasma concentrations of the drug compared to normal.

Nordoxepin is a mixture of (E) and (Z) stereoisomers similarly to doxepin. Whereas pharmaceutical doxepin is supplied in an approximate 85:15 ratio mixture of (E)- and (Z)-stereoisomers and plasma concentrations of doxepin remain roughly the same as this ratio with treatment, plasma levels of the (E)- and (Z)-stereoisomers of nordoxepin, due to stereoselective metabolism of doxepin by cytochrome P450 enzymes, are approximately 1:1.

Elimination

Doxepin is excreted primarily in the urine and predominantly in the form of glucuronide conjugates, with less than 3% of a dose excreted unchanged as doxepin or nordoxepin.

Pharmacogenetics

Since doxepin is mainly metabolized by CYP2D6, CYP2C9, and CYP2C19, genetic variations within the genes coding for these enzymes can affect its metabolism, leading to changes in the concentrations of the drug in the body. Increased concentrations of doxepin may increase the risk for side effects, including anticholinergic and nervous system adverse effects, while decreased concentrations may reduce the drug’s efficacy.

Individuals can be categorized into different types of cytochrome P450 metabolisers depending on which genetic variations they carry. These metaboliser types include poor, intermediate, extensive, and ultrarapid metabolisers. Most people are extensive metabolisers, and have “normal” metabolism of doxepin. Poor and intermediate metabolisers have reduced metabolism of the drug as compared to extensive metabolisers; patients with these metaboliser types may have an increased probability of experiencing side effects. Ultrarapid metabolisers break down doxepin much faster than extensive metabolisers; patients with this metaboliser type may have a greater chance of experiencing pharmacological failure.

A study assessed the metabolism of a single 75 mg oral dose of doxepin in healthy volunteers with genetic polymorphisms in CYP2D6, CYP2C9, and CYP2C19 enzymes. In CYP2D6 extensive, intermediate, and poor metabolizers, the mean clearance rates of (E)-doxepin were 406, 247, and 127 L/hour, respectively (~3-fold difference between extensive and poor). In addition, the bioavailability of (E)-doxepin was about 2-fold lower in extensive relative to poor CYP2D6 metabolizers, indicating a significant role of CYP2D6 in the first-pass metabolism of (E)-doxepin. The clearance of (E)-doxepin in CYP2C9 slow metabolizers was also significantly reduced at 238 L/hour. CYP2C19 was involved in the metabolism of (Z)-doxepin, with clearance rates of 191 L/hour in CYP2C19 extensive metabolisers and 73 L/hour in poor metabolisers (~2.5-fold difference). Area-under-the-curve (0–48 hour) levels of nordoxepin were dependent on the genotype of CYP2D6 with median values of 1.28, 1.35, and 5.28 nM•L/hour in CYP2D6 extensive, intermediate, and poor metabolisers, respectively (~4-fold difference between extensive and poor). Taken together, doxepin metabolism appears to be highly stereoselective, and CYP2D6 genotype has a major influence on the pharmacokinetics of (E)-doxepin. Moreover, CYP2D6 poor metabolisers, as well as patients taking potent CYP2D6 inhibitors (which can potentially convert a CYP2D6 extensive metaboliser into a poor metaboliser), may be at an increased risk for adverse effects of doxepin due to their slower clearance of the drug.

Another study assessed doxepin and nordoxepin metabolism in CYP2D6 ultra-rapid, extensive, and poor metabolisers following a single 75 mg oral dose. They found up to more than 10-fold variation in total exposure to doxepin and nordoxepin between the different groups. The researchers suggested that in order to achieve equivalent exposure, based on an average dose of 100%, the dosage of doxepin might be adjusted to 250% in ultra-rapid metabolisers, 150% in extensive metabolisers, 50% in intermediate metabolisers, and 30% in poor metabolisers.

Chemistry

Doxepin is a tricyclic compound, specifically a dibenzoxepin, and possesses three rings fused together with a side chain attached in its chemical structure. It is the only TCA with a dibenzoxepin ring system to have been marketed. Doxepin is a tertiary amine TCA, with its side chain-demethylated metabolite nordoxepin being a secondary amine. Other tertiary amine TCAs include amitriptyline, imipramine, clomipramine, dosulepin (dothiepin), and trimipramine. Doxepin is a mixture of (E) and (Z) stereoisomers (the latter being known as cidoxepin or cis-doxepin) and is used commercially in a ratio of approximately 85:15. The chemical name of doxepin is (E/Z)-3-(dibenzo[b,e]oxepin-11(6H)-ylidene)-N,N-dimethylpropan-1-amine and its free base form has a chemical formula of C19H21NO with a molecular weight of 279.376 g/mol. The drug is used commercially almost exclusively as the hydrochloride salt; the free base has been used rarely. The CAS Registry Number of the free base is 1668-19-5 and of the hydrochloride is 1229-29-4.

Society and Culture

Generic Names

Doxepin is the generic name of the drug in English and German and its INN and BAN, while doxepin hydrochloride is its USAN, USP, BANM, and JAN. Its generic name in Spanish and Italian and its DCIT are doxepina, in French and its DCF are doxépine, and in Latin is doxepinum.

The cis or (Z) stereoisomer of doxepin is known as cidoxepin, and this is its INN while cidoxepin hydrochloride is its USAN.

Brand Names

It was introduced under the brand names Quitaxon and Aponal by Boehringer and as Sinequan by Pfizer.

Doxepin is marketed under many brand names worldwide, including: Adnor, Anten, Antidoxe, Colian, Deptran, Dofu, Doneurin, Dospin, Doxal, Doxepini, Doxesom, Doxiderm, Flake, Gilex, Ichderm, Li Ke Ning, Mareen, Noctaderm, Oxpin, Patoderm, Prudoxin, Qualiquan, Quitaxon, Sagalon, Silenor, Sinepin, Sinequan, Sinquan, and Zonalon. It is also marketed as a combination drug with levomenthol under the brand name Doxure.

Approvals

The oral formulations of doxepin are US Food and Drug Administration (FDA)-approved for the treatment of depression and sleep-maintenance insomnia, and its topical formulations are FDA-approved the short-term management for some itchy skin conditions. In Australia and the United Kingdom, the only licensed indications are in the treatment of major depression and pruritus in eczema.

Research

Antihistamine

Cidoxepin is under development by Elorac, Inc. for the treatment of chronic urticaria (hives). As of 2017, it is in phase II clinical trials for this indication. The drug was also under investigation for the treatment of allergic rhinitis, atopic dermatitis, and contact dermatitis, but development for these indications was discontinued.

Headache

Doxepin was under development by Winston Pharmaceuticals in an intranasal formulation for the treatment of headache. As of August 2015, it was in phase II clinical trials for this indication.

Neuropathic Pain

As of 2017, there was no good evidence that topical doxepin was useful to treat localised neuropathic pain.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Doxepin >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Dosulepin?

Introduction

Dosulepin, also known as dothiepin and sold under the brand name Prothiaden among others, is a tricyclic antidepressant (TCA) which is used in the treatment of depression.

Dosulepin was once the most frequently prescribed antidepressant in the United Kingdom, but it is no longer widely used due to its relatively high toxicity in overdose without therapeutic advantages over other TCAs. It acts as a serotonin–norepinephrine reuptake inhibitor (SNRI) and also has other activities including antihistamine, antiadrenergic, antiserotonergic, anticholinergic, and sodium channel-blocking effects.

Brief History

Dosulepin was developed by SPOFA (then the largest producer of pharmaceutical products in the USSR). It was patented in 1962 and first appeared in the literature in 1962. The drug was first introduced for medical use in 1969, in the United Kingdom.

Medical Uses

Dosulepin is used for the treatment of major depressive disorder. There is clear evidence of the efficacy of dosulepin in psychogenic facial pain, though the drug may be needed for up to a year.

Contraindications

Contraindications include:

  • Epilepsy as it can lower the seizure threshold
  • TCAs should not be used concomitantly or within 14 days of treatment with monoamine oxidase inhibitors due to the risk for serotonin syndrome
  • Acute recovery phase following myocardial infarction as TCAs may produce conduction defects and arrhythmias
  • Liver failure
  • Hypersensitivity to dosulepin

Side Effects

Common Adverse Effects

  • Drowsiness
  • Extrapyramidal symptoms
  • Tremor
  • Disorientation
  • Dizziness
  • Paresthaesias
  • Alterations to ECG patterns
  • Dry mouth
  • Sweating
  • Urinary retention
  • Hypotension
  • Postural hypotension
  • Tachycardia
  • Palpitations
  • Arrhythmias
  • Conduction defects
  • Increased or decreased libido
  • Nausea
  • Vomiting
  • Constipation
  • Blurred vision

Less Common Adverse Effects

  • Disturbed concentration
  • Delusions
  • Hallucinations
  • Anxiety
  • Fatigue
  • Headaches
  • Restlessness
  • Excitement
  • Insomnia
  • Hypomania
  • Nightmares
  • Peripheral neuropathy
  • Ataxia
  • Incoordination
  • Seizures
  • Paralytic ileus
  • Hypertension
  • Heart block
  • Myocardial infarction
  • Stroke
  • Gynecomastia (swelling of breast tissue in males)
  • Testicular swelling
  • Impotence
  • Epigastric distress
  • Abdominal cramps
  • Parotid swellings
  • Diarrhea
  • Stomatitis (swelling of the mouth)
  • Black tongue
  • Peculiar taste sensations
  • Cholestatic jaundice
  • Altered liver function
  • Hepatitis (swelling of the liver)
  • Skin rash
  • Urticaria (hives)
  • Photosensitisation
  • Skin blisters
  • Angioneurotic edema
  • Weight loss
  • Urinary frequency
  • Mydriasis
  • Weight gain
  • Hyponatraemia (low blood sodium)
  • Movement disorders
  • Dyspepsia (indigestion)
  • Increased intraocular pressure
  • Changes in blood sugar levels
  • Thrombocytopenia (an abnormally low number of platelets in the blood. This makes one more susceptible to bleeds)
  • Eosinophilia (an abnormally high number of eosinophils in the blood)
  • Agranulocytosis (a dangerously low number of white blood cells in the blood leaving one open to potentially life-threatening infections)
  • Galactorrhoea (lactation that is non-associated with breastfeeding and lactation)

Overdose

Refer to Tricyclic Antidepressant Overdose.

The symptoms and the treatment of an overdose are largely the same as for the other TCAs. Dosulepin may be particularly toxic in overdose compared to other TCAs. The onset of toxic effects is around 4–6 hours after dosulepin is ingested. In order to minimise the risk of overdose it is advised that patients only receive a limited number of tablets at a time so as to limit their risk of overdosing. It is also advised that patients are not prescribed any medications that are known to increase the risk of toxicity in those receiving dosulepin due to the potential for mixed overdoses. The medication should also be kept out of reach of children.

Interactions

Dosulepin can potentiate the effects of alcohol and at least one death has been attributed to this combination. TCAs potentiate the sedative effects of barbiturates, tranquilisers and CNS depressants. Guanethidine and other adrenergic neuron blocking drugs can have their antihypertensive effects blocked by dosulepin. Sympathomimetics may potentiate the sympathomimetic effects of dosulepin. Due to the anticholinergic and antihistamine effects of dosulepin anticholinergic and antihistamine medications may have their effects potentiated by dosulepin and hence these combinations are advised against. Dosulepin may have its postural hypotensive effects potentiated by diuretics. Anticonvulsants may have their efficacy reduced by dosulepin due to its ability to reduce the seizure threshold.

Pharmacology

Pharmacodynamics

Dosulepin is a reuptake inhibitor of the serotonin transporter (SERT) and the norepinephrine transporter (NET), thereby acting as an SNRI. It is also an antagonist of the histamine H1 receptor, α1-adrenergic receptor, serotonin 5-HT2 receptors, and muscarinic acetylcholine receptors (mACh), as well as a blocker of voltage-gated sodium channels (VGSCs). The antidepressant effects of dosulepin are thought to be due to inhibition of the reuptake of norepinephrine and possibly also of serotonin.

Dosulepin has three metabolites, northiaden (desmethyldosulepin), dosulepin sulfoxide, and northiaden sulfoxide, which have longer terminal half-lives than that of dosulepin itself. However, whereas northiaden has potent activity similarly to dosulepin, the two sulfoxide metabolites have dramatically reduced activity. They have been described as essentially inactive, and are considered unlikely to contribute to either the therapeutic effects or side effects of dosulepin. Relative to dosulepin, northiaden has reduced activity as a serotonin reuptake inhibitor, antihistamine, and anticholinergic and greater potency as a norepinephrine reuptake inhibitor, similarly to other secondary amine TCAs. Unlike the sulfoxide metabolites, northiaden is thought to play an important role in the effects of dosulepin.

Although Heal & Cheetham (1992) reported relatively high Ki values of 12 and 15 nM for dosulepin and northiaden at the rat α2-adrenergic receptor and suggested that antagonism of the receptor could be involved in the antidepressant effects of dosulepin, Richelson & Nelson (1984) found a low KD of only 2,400 nM for dosulepin at this receptor using human brain tissue. This suggests that it in fact has low potency for this action, similarly to other TCAs.

Pharmacokinetics

Dosulepin is readily absorbed from the small intestine and is extensively metabolized on first-pass through the liver into its chief active metabolite, northiaden. Peak plasma concentrations of between 30.4 and 279 ng/mL (103–944 nmol/L) occur within 2–3 hours of oral administration. It is distributed in breast milk and crosses the placenta and blood–brain barrier. It is highly bound to plasma proteins (84%), and has a whole-body elimination half-life of 51 hours.

Chemistry

Dosulepin is a tricyclic compound, specifically a dibenzothiepine, and possesses three rings fused together with a side chain attached in its chemical structure. It is the only TCA with a dibenzothiepine ring system to have been marketed. The drug is a tertiary amine TCA, with its side chain-demethylated metabolite northiaden (desmethyldosulepin) being a secondary amine. Other tertiary amine TCAs include amitriptyline, imipramine, clomipramine, doxepin, and trimipramine. Dosulepin exhibits (E) and (Z) stereoisomerism like doxepin but in contrast the pure E or trans isomer is used medicinally. The drug is used commercially as the hydrochloride salt; the free base is not used.

Society and Culture

Generic Names

Dosulepin is the English and German generic name of the drug and its INN and BAN, while dosulepin hydrochloride is its BANM and JAN. Dothiepin is the former BAN of the drug while dothiepin hydrochloride is the former BANM and remains the current USAN. Its generic name in Spanish and Italian and its DCIT are dosulepina, in French and its DCF are dosulépine, and in Latin is dosulepinum.

Brand Names

Dosulepin is marketed throughout the world mainly under the brand name Prothiaden. It is or has been marketed under a variety of other brand names as well, including Altapin, Depresym, Dopress, Dothapax, Dothep, Idom, Prepadine, Protiaden, Protiadene, Thaden, and Xerenal.

Availability

Dosulepin is marketed throughout Europe (as Prothiaden, Protiaden, and Protiadene), Australia (as Dothep and Prothiaden), New Zealand (as Dopress) and South Africa (as Thaden). It is also available in Japan, Hong Kong, Taiwan, India, Singapore, and Malaysia. The drug is not available in the United States or Canada.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Dosulepin >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Butriptyline?

Introduction

Butriptyline, sold under the brand name Evadyne among others, is a tricyclic antidepressant (TCA) that has been used in the United Kingdom and several other European countries for the treatment of depression but appears to no longer be marketed. Along with trimipramine, iprindole, and amoxapine, it has been described as an “atypical” or “second-generation” TCA due to its relatively late introduction and atypical pharmacology. It was very little-used compared to other TCAs, with the number of prescriptions dispensed only in the thousands.

Brief History

Butriptyline was developed by Wyeth, an American pharmaceutical company, and introduced in the United Kingdom in either 1974 or 1975.

Medical Uses

Butriptyline was used in the treatment of depression. It was usually used at dosages of 150-300 mg/day.

Side Effects

Butriptyline is closely related to amitriptyline, and produces similar effects as other TCAs, but its side effects like sedation are said to be reduced in severity and it has a lower risk of interactions with other medications.

Butriptyline has potent antihistamine effects, resulting in sedation and somnolence. It also has potent anticholinergic effects, resulting in side effects like dry mouth, constipation, urinary retention, blurred vision, and cognitive/memory impairment. The drug has relatively weak effects as an alpha-1 blocker and has no effects as a norepinephrine reuptake inhibitor, so is associated with little to no antiadrenergic and adrenergic side effects.

Overdose

Refer to Tricyclic Antidepressant Overdose.

Pharmacology

Pharmacodynamics

In vitro, butriptyline is a strong antihistamine and anticholinergic, moderate 5-HT2 and α1-adrenergic receptor antagonist, and very weak or negligible monoamine reuptake inhibitor. These actions appear to confer a profile similar to that of iprindole and trimipramine with serotonin-blocking effects as the apparent predominant mediator of mood-lifting efficacy.

However, in small clinical trials, using similar doses, butriptyline was found to be similarly effective to amitriptyline and imipramine as an antidepressant, despite the fact that both of these TCAs are far stronger as both 5-HT2 antagonists and serotonin–norepinephrine reuptake inhibitors. As a result, it may be that butriptyline has a different mechanism of action, or perhaps functions as a prodrug in the body to a metabolite with different pharmacodynamics.

Pharmacokinetics

Therapeutic concentrations of butriptyline are in the range of 60-280 ng/mL (204-954 nmol/L). Its plasma protein binding is greater than 90%.

Chemistry

Butriptyline is a tricyclic compound, specifically a dibenzocycloheptadiene, and possesses three rings fused together with a side chain attached in its chemical structure. Other dibenzocycloheptadiene TCAs include amitriptyline, nortriptyline, and protriptyline. Butriptyline is an analogue of amitriptyline with an isobutyl side chain instead of a propylidene side chain. It is a tertiary amine TCA, with its side chain-demethylated metabolite norbutriptyline being a secondary amine. Other tertiary amine TCAs include amitriptyline, imipramine, clomipramine, dosulepin (dothiepin), doxepin, and trimipramine. The chemical name of butriptyline is 3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-yl)-N,N,2-trimethylpropan-1-amine and its free base form has a chemical formula of C21H27N with a molecular weight of 293.446 g/mol. The drug has been used commercially both as the free base and as the hydrochloride salt. The CAS Registry Number of the free base is 15686-37-0 and of the hydrochloride is 5585-73-9.

Society and Culture

Generic Names

Butriptyline is the English and French generic name of the drug and its International Non-Propriety Name (INN), British Approved Name (BAN), and Denomination Commune Francaise (DCF), while butriptyline hydrochloride is its BANM and (United States Adopted Name (USAN). Its generic name in Latin is butriptylinum, in German is butriptylin, and in Spanish is butriptylina.

Brand Names

Butriptyline has been marketed under the brand names Evadene, Evadyne, Evasidol, and Centrolese.

Availability

Butriptyline has been marketed in Europe, including in the United Kingdom, Belgium, Luxembourg, Austria, and Italy.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Butriptyline >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Amoxapine?

Introduction

Amoxapine, sold under the brand name Asendin among others, is a tricyclic antidepressant (TCAs). It is the N-demethylated metabolite of loxapine. Amoxapine first received marketing approval in the United States in 1992 (approximately 30 to 40 years after most of the other TCAs were introduced in the United States).

Medical Uses

Moxapine is used in the treatment of major depressive disorder (MDD). Compared to other antidepressants it is believed to have a faster onset of action, with therapeutic effects seen within four to seven days. In excess of 80% of patients that do respond to amoxapine are reported to respond within two weeks of the beginning of treatment. It also has properties similar to those of the atypical antipsychotics, and may behave as one and may be used in the treatment of schizophrenia off-label. Despite its apparent lack of extrapyramidal side effects in patients with schizophrenia it has been found to exacerbate motor symptoms in patients with Parkinson’s disease and psychosis.

Contraindications

As with all US Food and Drug Administration (FDA)-approved antidepressants it carries a black-box warning about the potential of an increase in suicidal thoughts or behaviour in children, adolescents and young adults under the age of 25. Its use is also advised against in individuals with known hypersensitivities to either amoxapine or other ingredients in its oral formulations. Its use is also recommended against in the following disease states:

  • Severe cardiovascular disorders (potential of cardiotoxic adverse effects such as QT interval prolongation).
  • Uncorrected narrow angle glaucoma.
  • Acute recovery post-myocardial infarction.

Its use is also advised against in individuals concurrently on monoamine oxidase inhibitors or if they have been on one in the past 14 days and in individuals on drugs that are known to prolong the QT interval (e.g. ondansetron, citalopram, pimozide, sertindole, ziprasidone, haloperidol, chlorpromazine, thioridazine, etc.).

Lactation

Its use in breastfeeding mothers not recommended as it is excreted in breast milk and the concentration found in breast milk is approximately a quarter that of the maternal serum level.

Side Effects

Very Common (>10% Incidence) Adverse Effects Include:

  • Constipation.
  • Dry mouth.
  • Sedation.

Common (1–10% Incidence) Adverse Effects Include:

  • Anxiety.
  • Ataxia.
  • Blurred vision.
  • Confusion.
  • Dizziness.
  • Headache.
  • Fatigue.
  • Nausea.
  • Nervousness/restlessness.
  • Excessive appetite.
  • Rash.
  • Increased perspiration (sweating).
  • Tremor.
  • Palpitations.
  • Nightmares.
  • Excitement.
  • Weakness.
  • ECG changes.
  • Oedema.
    • An abnormal accumulation of fluids in the tissues of the body leading to swelling.
  • Prolactin levels increased.
    • Prolactin is a hormone that regulates the generation of breast milk.
    • Prolactin elevation is not as significant as with risperidone or haloperidol.

Uncommon/Rare (<1% Incidence) Adverse Effects Include:

  • Diarrhoea.
  • Flatulence.
  • Hypertension (high blood pressure).
  • Hypotension (low blood pressure).
  • Syncope (fainting).
  • Tachycardia (high heart rate).
  • Menstrual irregularity.
  • Disturbance of accommodation.
  • Mydriasis (pupil dilation).
  • Orthostatic hypotension (a drop in blood pressure that occurs upon standing up).
  • Seizure.
  • Urinary retention (being unable to pass urine).
  • Urticaria (hives).
  • Vomiting.
  • Nasal congestion.
  • Photosensitisation
  • Hypomania (a dangerously elated/irritable mood).
  • Tingling.
  • Paresthaesias of the extremities.
  • Tinnitus.
  • Disorientation.
  • Numbness.
  • Incoordination.
  • Disturbed concentration.
  • Epigastric distress.
  • Peculiar taste in the mouth.
  • Increased or decreased libido.
  • Impotence (difficulty achieving an erection).
  • Painful ejaculation.
  • Lacrimation (crying without an emotional cause).
  • Weight gain.
  • Altered liver function.
  • Breast enlargement.
  • Drug fever.
  • Pruritus (itchiness).
  • Vasculitis a disorder where blood vessels are destroyed by inflammation.
    • Can be life-threatening if it affects the right blood vessels.
  • Galactorrhoea:
    • Lactation that is not associated with pregnancy or breast feeding.
  • Delayed micturition:
    • That is, delays in urination from when a conscious effort to urinate is made.
  • Hyperthermia:
    • Elevation of body temperature; its seriousness depends on the extent of the hyperthermia.
  • Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) this is basically when the body’s level of the hormone, antidiuretic hormone, which regulates the conservation of water and the restriction of blood vessels, is elevated.
    • This is potentially fatal as it can cause electrolyte abnormalities including hyponatraemia (low blood sodium), hypokalaemia (low blood potassium) and hypocalcaemia (low blood calcium) which can be life-threatening.
  • Agranulocytosis a drop in white blood cell counts.
    • The white blood cells are the cells of the immune system that fight off foreign invaders.
    • Hence agranulocytosis leaves an individual open to life-threatening infections.
  • Leukopaenia the same as agranulocytosis but less severe.
  • Neuroleptic malignant syndrome (a potentially fatal reaction to antidopaminergic agents, most often antipsychotics.
    • It is characterised by hyperthermia, diarrhoea, tachycardia, mental status changes [e.g. confusion], rigidity, extrapyramidal side effects)
  • Tardive dyskinesia a most often irreversible neurologic reaction to antidopaminergic treatment, characterised by involuntary movements of facial muscles, tongue, lips, and other muscles.
    • It develops most often only after prolonged (months, years or even decades) exposure to antidopaminergics.
  • Extrapyramidal side effects.
    • Motor symptoms such as tremor, parkinsonism, involuntary movements, reduced ability to move one’s voluntary muscles, etc.

Unknown Incidence or Relationship to Drug Treatment Adverse Effects Include:

  • Paralytic ileus (paralysed bowel).
  • Atrial arrhythmias including atrial fibrillation.
  • Myocardial infarction (heart attack).
  • Stroke.
  • Heart block.
  • Hallucinations.
  • Purpura.
  • Petechiae.
  • Parotid swelling.
  • Changes in blood glucose levels.
  • Pancreatitis swelling of the pancreas.
  • Hepatitis swelling of the liver.
  • Urinary frequency.
  • Testicular swelling.
  • Anorexia (weight loss).
  • Alopecia (hair loss).
  • Thrombocytopenia:
    • A significant drop in platelet count that leaves one open to life-threatening bleeds.
  • Eosinophilia an elevated level of the eosinophils of the body.
    • Eosinophils are the type of immune cell that’s job is to fight off parasitic invaders.
  • Jaundice:
    • yellowing of the skin, eyes and mucous membranes due to an impaired ability of the body to clear the by product of haem breakdown, bilirubin, most often the result of liver damage as it is the liver’s responsibility to clear bilirubin.

It tends to produce less anticholinergic effects, sedation and weight gain than some of the earlier TCAs (e.g. amitriptyline, clomipramine, doxepin, imipramine, trimipramine). It may also be less cardiotoxic than its predecessors.

Overdose

Refer to Tricyclic Antidepressant Overdose.

It is considered particularly toxic in overdose, with a high rate of renal failure (which usually takes 2-5 days), rhabdomyolysis, coma, seizures and even status epilepticus. Some believe it to be less cardiotoxic than other TCAs in overdose, although reports of cardiotoxic overdoses have been made.

Pharmacology

Pharmacodynamics

Amoxapine possesses a wide array of pharmacological effects. It is a moderate and strong reuptake inhibitor of serotonin and norepinephrine, respectively, and binds to the 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT6, 5-HT7, D2, α1-adrenergic, D3, D4, and H1 receptors with varying but significant affinity, where it acts as an antagonist (or inverse agonist depending on the receptor in question) at all sites. It has weak but negligible affinity for the dopamine transporter and the 5-HT1A, 5-HT1B, D1, α2-adrenergic, H4, mACh, and GABAA receptors, and no affinity for the β-adrenergic receptors or the allosteric benzodiazepine site on the GABAA receptor. Amoxapine is also a weak GlyT2 blocker, as well as a weak (Ki = 2.5 μM, EC50 = 0.98 μM) δ-opioid receptor partial agonist.

7-Hydroxyamoxapine, a major active metabolite of amoxapine, is a more potent dopamine receptor antagonist and contributes to its neuroleptic efficacy, whereas 8-hydroxyamoxapine is a norepinephrine reuptake inhibitor but a stronger serotonin reuptake inhibitor and helps to balance amoxapine’s ratio of serotonin to norepinephrine transporter blockade

Pharmacokinetics

Amoxapine is metabolised into two main active metabolites: 7-hydroxyamoxapine and 8-hydroxyamoxapine.

Society and Culture

Brand Names

Brand names for amoxapine include (where † denotes discontinued brands):

  • Adisen (KR).
  • Amolife (IN).
  • Amoxan (JP).
  • Asendin† (previously marketed in CA, NZ, US).
  • Asendis† (previously marketed in IE, UK).
  • Défanyl (FR).
  • Demolox (DK†, IN, ES†).
  • Oxamine (IN).
  • Oxcap.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Amoxapine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Amitriptyline?

Introduction

Amitriptyline, sold under the brand name Elavil among others, is a tricyclic antidepressant (TCA) primarily used to treat cyclic vomiting syndrome (CVS), major depressive disorder (MDD) and a variety of pain syndromes from neuropathic pain to fibromyalgia to migraine and tension headaches. Due to the frequency and prominence of side effects, amitriptyline is generally considered a second-line therapy for these indications.

The most common side effects are dry mouth, drowsiness, dizziness, constipation, and weight gain. Of note is sexual dysfunction, observed primarily in males. Glaucoma, liver toxicity and abnormal heart rhythms are rare but serious side effects. Blood levels of amitriptyline vary significantly from one person to another, and amitriptyline interacts with many other medications potentially aggravating its side effects.

Amitriptyline was discovered in the late 1950s by scientists at Merck and approved by the US Food and Drug Administration (FDA) in 1961. It is on the World Health Organisation’s List of Essential Medicines. It is available as a generic medication. In 2019, it was the 94th most commonly prescribed medication in the United States, with more than 8 million prescriptions.

Brief History

Amitriptyline was first developed by the American pharmaceutical company Merck in the late 1950s. In 1958, Merck approached a number of clinical investigators proposing to conduct clinical trials of amitriptyline for schizophrenia. One of these researchers, Frank Ayd, instead, suggested using amitriptyline for depression. Ayd treated 130 patients and, in 1960, reported that amitriptyline had antidepressant properties similar to another, and the only known at the time, tricyclic antidepressant imipramine. Following this, the FDA approved amitriptyline for depression in 1961.

In Europe, due to a quirk of the patent law at the time allowing patents only on the chemical synthesis but not on the drug itself, Roche and Lundbeck were able to independently develop and market amitriptyline in the early 1960s.

According to research by the historian of psychopharmacology David Healy, amitriptyline became a much bigger selling drug than its precursor imipramine because of two factors. First, amitriptyline has much stronger anxiolytic effect. Second, Merck conducted a marketing campaign raising clinicians’ awareness of depression as a clinical entity.

Medical Uses

Amitriptyline is indicated for the treatment of major depressive disorder and neuropathic pain and for the prevention of migraine and chronic tension headache. It can be used for the treatment of nocturnal enuresis in children older than 6 after other treatments have failed.

Depression

Amitriptyline is effective for depression, but it is rarely used as a first-line antidepressant due to its higher toxicity in overdose and generally poorer tolerability. It can be tried for depression as a second-line therapy, after the failure of other treatments. For treatment-resistant adolescent depression or for cancer-related depression amitriptyline is no better than placebo. It is sometimes used for the treatment of depression in Parkinson’s disease, but supporting evidence for that is lacking.

Pain

Amitriptyline alleviates painful diabetic neuropathy. It is recommended by a variety of guidelines as a first or second line treatment. It is as effective for this indication as gabapentin or pregabalin but less well tolerated.

Low doses of amitriptyline moderately improve sleep disturbances and reduce pain and fatigue associated with fibromyalgia. It is recommended for fibromyalgia accompanied by depression by Association of the Scientific Medical Societies in Germany and as a second-line option for fibromyalgia, with exercise being the first line option, by European League Against Rheumatism. Combinations of amitriptyline and fluoxetine or melatonin may reduce fibromyalgia pain better than either medication alone.

There is some (low-quality) evidence that amitriptyline may reduce pain in cancer patients. It is recommended only as a second line therapy for non-chemotherapy-induced neuropathic or mixed neuropathic pain, if opioids did not provide the desired effect.

Moderate evidence exists in favour of amitriptyline use for atypical facial pain. Amitriptyline is ineffective for HIV-associated neuropathy.

Headache

Amitriptyline is probably effective for the prevention of periodic migraine in adults. Amitriptyline is similar in efficacy to venlafaxine and topiramate but carries a higher burden of adverse effects than topiramate. For many patients, even very small doses of amitriptyline are helpful, which may allow for minimization of side effects. Amitriptyline is not significantly different from placebo when used for the prevention of migraine in children.

Amitriptyline may reduce the frequency and duration of chronic tension headache, but it is associated with worse adverse effects than mirtazapine. Overall, amitriptyline is recommended for tension headache prophylaxis, along with lifestyle advice, which should include avoidance of analgesia and caffeine.

Other Indications

Amitriptyline is effective for the treatment of irritable bowel syndrome; however, because of its side effects, it should be reserved for select patients for whom other agents do not work. There is insufficient evidence to support its use for abdominal pain in children with functional gastrointestinal disorders.

Tricyclic antidepressants decrease the frequency, severity, and duration of cyclic vomiting syndrome episodes. Amitriptyline, as the most commonly used of them, is recommended as a first-line agent for its therapy.

Amitriptyline may improve pain and urgency intensity associated with bladder pain syndrome and can be used in the management of this syndrome. Amitriptyline can be used in the treatment of nocturnal enuresis in children. However, its effect is not sustained after the treatment ends. Alarm therapy gives better short- and long-term results.

In the US, amitriptyline is commonly used in children with ADHD as an adjunct to stimulant medications without any evidence or guideline supporting this practice. Many physicians in the UK (and the US also) commonly prescribe amitriptyline for insomnia; however, Cochrane reviewers were not able to find any randomised controlled studies that would support or refute this practice.

Contraindications and Precautions

The known contraindications of amitriptyline are:

  • History of myocardial infarction.
  • History of arrhythmias, particularly any degree of heart block.
  • Coronary artery disease.
  • Porphyria.
  • Severe liver disease (such as cirrhosis).
  • Being under six years of age.
  • Patients who are taking monoamine oxidase inhibitors (MAOIs) or have taken them within the last 14 days.

Amitriptyline should be used with caution in patients with epilepsy, impaired liver function, pheochromocytoma, urinary retention, prostate enlargement, hyperthyroidism, and pyloric stenosis.

In patients with the rare condition of shallow anterior chamber of eyeball and narrow anterior chamber angle, amitriptyline may provoke attacks of acute glaucoma due to dilation of the pupil. It may aggravate psychosis, if used for depression with schizophrenia, or precipitate the switch to mania in those with bipolar disorder.

CYP2D6 poor metabolisers should avoid amitriptyline due to increased side effects. If it is necessary to use it, half dose is recommended. Amitriptyline can be used during pregnancy and lactation, in the cases when SSRI do not work.

Side Effects

The most frequent side effects, occurring in 20% or more of users, are dry mouth, drowsiness, dizziness, constipation, and weight gain (on average 1.8 kg). Other common side effects (in 10% or more) are vision problems (amblyopia, blurred vision), tachycardia, increased appetite, tremor, fatigue/asthenia/feeling slowed down, and dyspepsia.

A literature review about abnormal movements and amitriptyline found that this drug is associated with various movement disorders, particularly dyskinesia, dystonia, and myoclonus. Stuttering and restless legs syndrome are some of the less common associations.

A less common side effect of amitriptyline is urination problems (8.7%).

Amitriptyline-associated sexual dysfunction (occurring at a frequency of 6.9%) seems to be mostly confined to males with depression and is expressed predominantly as erectile dysfunction and low libido disorder, with lesser frequency of ejaculatory and orgasmic problems. The rate of sexual dysfunction in males treated for indications other than depression and in females is not significantly different from placebo.

Liver tests abnormalities occur in 10-12% of patients on amitriptyline, but are usually mild, asymptomatic and transient, with consistently elevated alanine transaminase in 3% of all patients. The increases of the enzymes above the 3-fold threshold of liver toxicity are uncommon, and cases of clinically apparent liver toxicity are rare; nevertheless, amitriptyline is placed in the group of antidepressants with greater risks of hepatic toxicity.

Amitriptyline prolongs the QT interval. This prolongation is relatively small at therapeutic doses but becomes severe in overdose.

Overdose

Refer to Tricyclic Antidepressant Overdose.

The symptoms and the treatment of an overdose are largely the same as for the other TCAs, including the presentation of serotonin syndrome and adverse cardiac effects. The British National Formulary notes that amitriptyline can be particularly dangerous in overdose, thus it and other TCAs are no longer recommended as first-line therapy for depression. The treatment of overdose is mostly supportive as no specific antidote for amitriptyline overdose is available. Activated charcoal may reduce absorption if given within 1-2 hours of ingestion. If the affected person is unconscious or has an impaired gag reflex, a nasogastric tube may be used to deliver the activated charcoal into the stomach. ECG monitoring for cardiac conduction abnormalities is essential and if one is found close monitoring of cardiac function is advised. Body temperature should be regulated with measures such as heating blankets if necessary. Cardiac monitoring is advised for at least five days after the overdose. Benzodiazepines are recommended to control seizures. Dialysis is of no use due to the high degree of protein binding with amitriptyline.

Interactions

Since amitriptyline and its active metabolite nortriptyline are primarily metabolised by cytochromes CYP2D6 and CYP2C19, the inhibitors of these enzymes are expected to exhibit pharmacokinetic interactions with amitriptyline. According to the prescribing information, the interaction with CYP2D6 inhibitors may increase the plasma level of amitriptyline. However, the results in the other literature are inconsistent: the co-administration of amitriptyline with a potent CYP2D6 inhibitor paroxetine does increase the plasma levels of amitriptyline two-fold and of the main active metabolite nortriptyline 1.5-fold, but combination with less potent CYP2D6 inhibitors thioridazine or levomepromazine does not affect the levels of amitriptyline and increases nortriptyline by about 1.5-fold; a moderate CYP2D6 inhibitor fluoxetine does not seem to have a significant effect on the levels of amitriptyline or nortriptyline. A case of clinically significant interaction with potent CYP2D6 inhibitor terbinafine has been reported.

A potent inhibitor of CYP2C19 and other cytochromes fluvoxamine increases the level of amitriptyline two-fold while slightly decreasing the level of nortriptyline. Similar changes occur with a moderate inhibitor of CYP2C19 and other cytochromes cimetidine: amitriptyline level increases by about 70%, while nortriptyline decreases by 50%. CYP3A4 inhibitor ketoconazole elevates amitriptyline level by about a quarter. On the other hand, cytochrome P450 inducers such as carbamazepine and St. John’s Wort decrease the levels of both amitriptyline and nortriptyline.

Oral contraceptives may increase the blood level of amitriptyline by as high as 90%. Valproate moderately increases the levels of amitriptyline and nortriptyline through an unclear mechanism.

The prescribing information warns that the combination of amitriptyline with monoamine oxidase inhibitors may cause potentially lethal serotonin syndrome; however, this has been disputed. The prescribing information cautions that some patients may experience a large increase in amitriptyline concentration in the presence of topiramate. However, other literature states that there is little or no interaction: in a pharmacokinetic study topiramate only increased the level of amitriptyline by 20% and nortriptyline by 33%.

Amitriptiline counteracts the antihypertensive action of guanethidine. When given with amitriptyline, other anticholinergic agents may result in hyperpyrexia or paralytic ileus. Co-administration of amitriptyline and disulfiram is not recommended due to the potential for the development of toxic delirium. Amitriptyline causes an unusual type of interaction with the anticoagulant phenprocoumon during which great fluctuations of the prothrombin time have been observed.

Pharmacology

Pharmacodynamics

Amitriptyline inhibits serotonin transporter (SERT) and norepinephrine transporter (NET). It is metabolised to nortriptyline, a stronger norepinephrine reuptake inhibitor, further augmenting amitriptyline’s effects on norepinephrine reuptake.

Amitriptyline additionally acts as a potent inhibitor of the serotonin 5-HT2A, 5-HT2C, the α1A-adrenergic, the histamine H1 and the M1-M5 muscarinic acetylcholine receptors.

Amitriptyline is a non-selective blocker of multiple ion channels, in particular, voltage-gated sodium channels Nav1.3, Nav1.5, Nav1.6, Nav1.7, and Nav1.8, voltage-gated potassium channels Kv7.2/ Kv7.3, Kv7.1, Kv7.1/KCNE1, and hERG.

Mechanism of Action

Inhibition of serotonin and norepinephrine transporters by amitriptyline results in interference with neuronal reuptake of serotonin and norepinephrine. Since the reuptake process is important physiologically in terminating transmitting activity, this action may potentiate or prolong activity of serotonergic and adrenergic neurons and is believed to underlie the antidepressant activity of amitriptyline.

Inhibition of norepinephrine reuptake leading to increased concentration of norepinephrine in the posterior grey column of the spinal cord appears to be mostly responsible for the analgesic action of amitriptyline. Increased level of norepinephrine increases the basal activity of alpha-2 adrenergic receptors, which mediate an analgesic effect by increasing gamma-aminobutyric acid transmission among spinal interneurons. The blocking effect of amitriptyline on sodium channels may also contribute to its efficacy in pain conditions.

Pharmacokinetics

Amitriptyline is readily absorbed from the gastrointestinal tract (90-95%). Absorption is gradual with the peak concentration in blood plasma reached after about 4 hours. Extensive metabolism on the first pass through the liver leads to average bioavailability of about 50% (45%-53%). Amitriptyline is metabolized mostly by CYP2C19 into nortriptyline and by CYP2D6 leading to a variety of hydroxylated metabolites, with the principal one among them being (E)-10-hydroxynortriptyline, and to a lesser degree, by CYP3A4.

Nortriptyline, the main active metabolite of amitriptyline, is an antidepressant on its own right. Nortriptyline reaches 10% higher level in the blood plasma than the parent drug amitriptyline and 40% greater area under the curve, and its action is an important part of the overall action of amitriptyline.

Another active metabolite is (E)-10-hydroxynortriptyline, which is a norepinephrine uptake inhibitor four times weaker than nortriptyline. (E)-10-hydroxynortiptyline blood level is comparable to that of nortriptyline, but its cerebrospinal fluid level, which is a close proxy of the brain concentration of a drug, is twice higher than nortriptyline’s. Based on this, (E)-10-hydroxynortriptyline was suggested to significantly contribute to antidepressant effects of amitriptyline.

Blood levels of amitriptyline and nortriptyline and pharmacokinetics of amitriptyline in general, with clearance difference of up to 10-fold, vary widely between individuals. Variability of the area under the curve in steady state is also high, which makes a slow upward titration of the dose necessary.

In the blood, amitriptyline is 96% bound to plasma proteins; nortriptyline is 93-95% bound, and (E)-10-hydroxynortiptyline is about 60% bound. Amitriptyline has an elimination half life of 21 hours, nortriptyline – 23-31 hours, and (E)-10-hydroxynortiptyline – 8-10 hours. Within 48 hours, 12-80% of amitriptyline is eliminated in the urine, mostly as metabolites. 2% of the unchanged drug is excreted in the urine. Elimination in the faeces, apparently, have not been studied.

Therapeutic levels of amitriptyline range from 75 to 175 ng/mL (270-631 nM), or 80-250 ng/mL of both amitriptyline and its metabolite nortriptyline.

Pharmacogenetics

Since amitriptyline is primarily metabolised by CYP2D6 and CYP2C19, genetic variations within the genes coding for these enzymes can affect its metabolism, leading to changes in the concentrations of the drug in the body. Increased concentrations of amitriptyline may increase the risk for side effects, including anticholinergic and nervous system adverse effects, while decreased concentrations may reduce the drug’s efficacy.

Individuals can be categorised into different types of CYP2D6 or CYP2C19 metabolisers depending on which genetic variations they carry. These metaboliser types include poor, intermediate, extensive, and ultrarapid metabolisers. Most individuals (about 77-92%) are extensive metabolisers, and have “normal” metabolism of amitriptyline. Poor and intermediate metabolisers have reduced metabolism of the drug as compared to extensive metabolisers; patients with these metaboliser types may have an increased probability of experiencing side effects. Ultrarapid metabolisers use amitriptyline much faster than extensive metabolisers; patients with this metaboliser type may have a greater chance of experiencing pharmacological failure.

The Clinical Pharmacogenetics Implementation Consortium recommends avoiding amitriptyline in patients who are CYP2D6 ultrarapid or poor metabolizers, due to the risk for a lack of efficacy and side effects, respectively. The consortium also recommends considering an alternative drug not metabolised by CYP2C19 in patients who are CYP2C19 ultrarapid metabolisers. A reduction in starting dose is recommended for patients who are CYP2D6 intermediate metabolisers and CYP2C19 poor metabolisers. If use of amitriptyline is warranted, therapeutic drug monitoring is recommended to guide dose adjustments. The Dutch Pharmacogenetics Working Group also recommends selecting an alternative drug or monitoring plasma concentrations of amitriptyline in patients who are CYP2D6 poor or ultrarapid metabolisers, and selecting an alternative drug or reducing initial dose in patients who are CYP2D6 intermediate metabolisers.

Chemistry

Amitriptyline is a highly lipophilic molecule having an octanol-water partition coefficient (pH 7.4) of 3.0, while the log P of the free base was reported as 4.92. Solubility of the free base amitriptyline in water is 14 mg/L. Amitriptyline is prepared by reacting dibenzosuberone with 3-(dimethylamino)propylmagnesium chloride and then heating the resulting intermediate product with hydrochloric acid to eliminate water.

Society and Culture

English folk singer Nick Drake died from an overdose of Tryptizol in 1974.

Senteni Masango, wife of Swaziland King Mswati, died on 6 April 2018 after committing suicide by overdosing on amytriptyline capsules.

In the 2021 film The Many Saints of Newark, amitriptyline (referred to by the brand name Elavil) is part of the plot line of the movie.

Generic Names

Amitriptyline is the English and French generic name of the drug and its INN, BAN, and DCF, while amitriptyline hydrochloride is its USAN, USP, BANM, and JAN. Its generic name in Spanish and Italian and its DCIT are amitriptilina, in German is Amitriptylin, and in Latin is amitriptylinum. The embonate salt is known as amitriptyline embonate, which is its BANM, or as amitriptyline pamoate unofficially.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Amitriptyline >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Sertraline?

Introduction

Sertraline, sold under the brand name Zoloft among others, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class.

The efficacy of sertraline for depression is similar to that of other antidepressants, and the differences are mostly confined to side effects. Sertraline is better tolerated than the older tricyclic antidepressants, and it may work better than fluoxetine for some subtypes of depression. Sertraline is effective for panic disorder, social anxiety disorder, generalised anxiety disorder (GAD), and obsessive-compulsive disorder (OCD). However, for OCD, cognitive behavioural therapy (CBT), particularly in combination with sertraline, is a better treatment. Although approved for post-traumatic stress disorder, sertraline leads to only modest improvement in this condition. Sertraline also alleviates the symptoms of premenstrual dysphoric disorder and can be used in sub-therapeutic doses or intermittently for its treatment.

Sertraline shares the common side effects and contraindications of other SSRIs, with high rates of nausea, diarrhoea, insomnia, and sexual side effects, but it appears not to lead to much weight gain, and its effects on cognitive performance are mild. Similar to other antidepressants, the use of sertraline for depression may be associated with a higher rate of suicidal thoughts and behaviour in people under the age of 25. It should not be used together with MAO inhibitor medication: this combination causes serotonin syndrome. Sertraline taken during pregnancy is associated with a significant increase in congenital heart defects in newborns.

Sertraline was invented and developed by scientists at Pfizer and approved for medical use in the United States in 1991. It is on the World Health Organisation’s List of Essential Medicines. It is available as a generic medication. In 2016, sertraline was the most commonly prescribed psychiatric medication in the US and in 2019, it was the twelfth most commonly prescribed medication in the US, with over 37 million prescriptions.

Brief History

The history of sertraline dates back to the early 1970s, when Pfizer chemist Reinhard Sarges invented a novel series of psychoactive compounds, including lometraline, based on the structures of the neuroleptics thiothixene and pinoxepin. Further work on these compounds led to tametraline, a norepinephrine and weaker dopamine reuptake inhibitor. Development of tametraline was soon stopped because of undesired stimulant effects observed in animals. A few years later, in 1977, pharmacologist Kenneth Koe, after comparing the structural features of a variety of reuptake inhibitors, became interested in the tametraline series. He asked another Pfizer chemist, Willard Welch, to synthesize some previously unexplored tametraline derivatives. Welch generated a number of potent norepinephrine and triple reuptake inhibitors, but to the surprise of the scientists, one representative of the generally inactive cis-analogues was a serotonin reuptake inhibitor. Welch then prepared stereoisomers of this compound, which were tested in vivo by animal behavioural scientist Albert Weissman. The most potent and selective (+)-isomer was taken into further development and eventually named sertraline. Weissman and Koe recalled that the group did not set up to produce an antidepressant of the SSRI type – in that sense their inquiry was not “very goal driven”, and the discovery of the sertraline molecule was serendipitous. According to Welch, they worked outside the mainstream at Pfizer, and even “did not have a formal project team”. The group had to overcome initial bureaucratic reluctance to pursue sertraline development, as Pfizer was considering licensing an antidepressant candidate from another company.

Sertraline was approved by the US Food and Drug Administration (FDA) in 1991 based on the recommendation of the Psychopharmacological Drugs Advisory Committee; it had already become available in the United Kingdom the previous year. The FDA committee achieved a consensus that sertraline was safe and effective for the treatment of major depression. During the discussion, Paul Leber, the director of the FDA Division of Neuropharmacological Drug Products, noted that granting approval was a “tough decision”, since the treatment effect on outpatients with depression had been “modest to minimal”. Other experts emphasized that the drug’s effect on inpatients had not differed from placebo and criticised poor design of the clinical trials by Pfizer. For example, 40% of participants dropped out of the trials, significantly decreasing their validity.

Until 2002, sertraline was only approved for use in adults ages 18 and over; that year, it was approved by the FDA for use in treating children aged 6 or older with severe OCD. In 2003, the UK Medicines and Healthcare products Regulatory Agency issued a guidance that, apart from fluoxetine (Prozac), SSRIs are not suitable for the treatment of depression in patients under 18. However, sertraline can still be used in the UK for the treatment of OCD in children and adolescents. In 2005, the FDA added a boxed warning concerning paediatric suicidal behaviour to all antidepressants, including sertraline. In 2007, labelling was again changed to add a warning regarding suicidal behaviour in young adults ages 18 to 24.

Medical Uses

Sertraline has been approved for major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), premenstrual dysphoric disorder (PMDD), panic disorder, and social anxiety disorder (SAD). Sertraline is not approved for use in children except for those with OCD.

Depression

Multiple controlled clinical trials established efficacy of sertraline for the treatment of depression. Sertraline is also an effective antidepressant in the routine clinical practice. Continued treatment with sertraline prevents both a relapse of the current depressive episode and future episodes (recurrence of depression).

In several double-blind studies, sertraline was consistently more effective than placebo for dysthymia, a more chronic variety of depression, and comparable to imipramine in that respect. Sertraline also improves the depression of dysthymic patients to a greater degree than psychotherapy.

Limited paediatric data also demonstrates reduction in depressive symptoms in the paediatric population though remains a second line therapy after fluoxetine.

Comparison with Other Antidepressants

In general, sertraline efficacy is similar to that of other antidepressants. For example, a meta-analysis of 12 new-generation antidepressants showed that sertraline and escitalopram are the best in terms of efficacy and acceptability in the acute-phase treatment of adults with depression. Comparative clinical trials demonstrated that sertraline is similar in efficacy against depression to moclobemide, nefazodone, escitalopram, bupropion, citalopram, fluvoxamine, paroxetine, venlafaxine, and mirtazapine. Sertraline may be more efficacious for the treatment of depression in the acute phase (first 4 weeks) than fluoxetine.

There are differences between sertraline and some other antidepressants in their efficacy in the treatment of different subtypes of depression and in their adverse effects. For severe depression, sertraline is as good as clomipramine but is better tolerated. Sertraline appears to work better in melancholic depression than fluoxetine, paroxetine, and mianserin and is similar to the tricyclic antidepressants such as amitriptyline and clomipramine. In the treatment of depression accompanied by OCD, sertraline performs significantly better than desipramine on the measures of both OCD and depression. Sertraline is equivalent to imipramine for the treatment of depression with co-morbid panic disorder, but it is better tolerated. Compared with amitriptyline, sertraline offered a greater overall improvement in quality of life of depressed patients.

Depression in Elderly

Sertraline used for the treatment of depression in elderly (older than 60) patients is superior to placebo and comparable to another SSRI fluoxetine, and tricyclic antidepressants (TCAs) amitriptyline, nortriptyline and imipramine. Sertraline has much lower rates of adverse effects than these TCAs, with the exception of nausea, which occurs more frequently with sertraline. In addition, sertraline appears to be more effective than fluoxetine or nortriptyline in the older-than-70 subgroup. Accordingly, a meta-analysis of antidepressants in older adults found that sertraline, paroxetine and duloxetine were better than placebo. On the other hand, in a 2003 trial the effect size was modest, and there was no improvement in quality of life as compared to placebo. With depression in dementia, there is no benefit of sertraline treatment compared to either placebo or mirtazapine.

Obsessive-Compulsive Disorder

Sertraline is effective for the treatment of OCD in adults and children. It was better tolerated and, based on intention-to-treat analysis, performed better than the gold standard of OCD treatment clomipramine. Continuing sertraline treatment helps prevent relapses of OCD with long-term data supporting its use for up to 24 months. It is generally accepted that the sertraline dosages necessary for the effective treatment of OCD are higher than the usual dosage for depression. The onset of action is also slower for OCD than for depression. The treatment recommendation is to start treatment with a half of maximal recommended dose for at least two months. After that, the dose can be raised to the maximal recommended in the cases of unsatisfactory response.

CBT alone was superior to sertraline in both adults and children; however, the best results were achieved using a combination of these treatments.

Panic Disorder

Sertraline is superior to placebo for the treatment of panic disorder. The response rate was independent of the dose. In addition to decreasing the frequency of panic attacks by about 80% (vs. 45% for placebo) and decreasing general anxiety, sertraline resulted in improvement of quality of life on most parameters. The patients rated as “improved” on sertraline reported better quality of life than the ones who “improved” on placebo. The authors of the study argued that the improvement achieved with sertraline is different and of a better quality than the improvement achieved with placebo. Sertraline is equally effective for men and women, and for patients with or without agoraphobia. Previous unsuccessful treatment with benzodiazepines does not diminish its efficacy. However, the response rate was lower for the patients with more severe panic. Starting treatment simultaneously with sertraline and clonazepam, with subsequent gradual discontinuation of clonazepam, may accelerate the response.

Double-blind comparative studies found sertraline to have the same effect on panic disorder as paroxetine or imipramine. While imprecise, comparison of the results of trials of sertraline with separate trials of other anti-panic agents (clomipramine, imipramine, clonazepam, alprazolam, and fluvoxamine) indicates approximate equivalence of these medications.

Other Anxiety Disorders

Sertraline has been successfully used for the treatment of social anxiety disorder. All three major domains of the disorder (fear, avoidance, and physiological symptoms) respond to sertraline. Maintenance treatment, after the response is achieved, prevents the return of the symptoms. The improvement is greater among the patients with later, adult onset of the disorder. In a comparison trial, sertraline was superior to exposure therapy, but patients treated with the psychological intervention continued to improve during a year-long follow-up, while those treated with sertraline deteriorated after treatment termination. The combination of sertraline and CBT appears to be more effective in children and young people than either treatment alone.

Sertraline has not been approved for the treatment of generalised anxiety disorder; however, several guidelines recommend it as a first-line medication referring to good quality controlled clinical trials.

Premenstrual Dysphoric Disorder

Sertraline is effective in alleviating the symptoms of premenstrual dysphoric disorder (PMDD), a severe form of premenstrual syndrome. Significant improvement was observed in 50-60% of cases treated with sertraline vs. 20-30% of cases on placebo. The improvement began during the first week of treatment, and in addition to mood, irritability, and anxiety, improvement was reflected in better family functioning, social activity and general quality of life. Work functioning and physical symptoms, such as swelling, bloating and breast tenderness, were less responsive to sertraline. Taking sertraline only during the luteal phase, that is, the 12-14 days before menses, was shown to work as well as continuous treatment. Continuous treatment with sub-therapeutic doses of sertraline (25 mg vs. usual 50-100 mg) is also effective.

Other Indications

Sertraline is approved for the treatment of post-traumatic stress disorder (PTSD). National Institute of Clinical Excellence recommends it for patients who prefer drug treatment to a psychological one. Other guidelines also suggest sertraline as a first-line option for pharmacological therapy. When necessary, long-term pharmacotherapy can be beneficial. There are both negative and positive clinical trial results for sertraline, which may be explained by the types of psychological traumas, symptoms, and comorbidities included in the various studies. Positive results were obtained in trials that included predominantly women (75%) with a majority (60%) having physical or sexual assault as the traumatic event. Contrary to the above suggestions, a meta-analysis of sertraline clinical trials for PTSD found it to be not significantly better than placebo. Another meta-analysis relegated sertraline to the second line, proposing trauma focused psychotherapy as a first-line intervention. The authors noted that Pfizer had declined to submit the results of a negative trial for the inclusion into the meta-analysis making the results unreliable.

Sertraline when taken daily can be useful for the treatment of premature ejaculation. A disadvantage of sertraline is that it requires continuous daily treatment to delay ejaculation significantly.

A 2019 systematic review suggested that sertraline may be a good way to control anger, irritability and hostility in depressed patients and patients with other comorbidities.

Contraindications

Sertraline is contraindicated in individuals taking monoamine oxidase inhibitors or the antipsychotic pimozide. Sertraline concentrate contains alcohol and is therefore contraindicated with disulfiram. The prescribing information recommends that treatment of the elderly and patients with liver impairment “must be approached with caution”. Due to the slower elimination of sertraline in these groups, their exposure to sertraline may be as high as three times the average exposure for the same dose.

Side Effects

Nausea, ejaculation failure, insomnia, diarrhoea, dry mouth, somnolence, dizziness, tremor, headache, excessive sweating, fatigue, and decreased libido are the common adverse effects associated with sertraline with the greatest difference from placebo. Those that most often resulted in interruption of the treatment are nausea, diarrhoea and insomnia. The incidence of diarrhoea is higher with sertraline – especially when prescribed at higher doses – in comparison with other SSRIs.

Over more than six months of sertraline therapy for depression, people showed a nonsignificant weight increase of 0.1%. Similarly, a 30-month-long treatment with sertraline for OCD resulted in a mean weight gain of 1.5% (1 kg). Although the difference did not reach statistical significance, the average weight gain was lower for fluoxetine (1%) but higher for citalopram, fluvoxamine and paroxetine (2.5%). Of the sertraline group, 4.5% gained a large amount of weight (defined as more than 7% gain). This result compares favourably with placebo, where, according to the literature, 3-6% of patients gained more than 7% of their initial weight. The large weight gain was observed only among female members of the sertraline group; the significance of this finding is unclear because of the small size of the group.

Over a two-week treatment of healthy volunteers, sertraline slightly improved verbal fluency but did not affect word learning, short-term memory, vigilance, flicker fusion time, choice reaction time, memory span, or psychomotor coordination. In spite of lower subjective rating, that is, feeling that they performed worse, no clinically relevant differences were observed in the objective cognitive performance in a group of people treated for depression with sertraline for 1.5 years as compared to healthy controls. In children and adolescents taking sertraline for six weeks for anxiety disorders, 18 out of 20 measures of memory, attention and alertness stayed unchanged. Divided attention was improved and verbal memory under interference conditions decreased marginally. Because of the large number of measures taken, it is possible that these changes were still due to chance. The unique effect of sertraline on dopaminergic neurotransmission may be related to these effects on cognition and vigilance.

Sertraline has a low level of exposure of an infant through the breast milk and is recommended as the preferred option for the antidepressant therapy of breast-feeding mothers. There is 29-42% increase in congenital heart defects among children whose mothers were prescribed sertraline during pregnancy, with sertraline use in the first trimester associated with 2.7-fold increase in septal heart defects.

Abrupt interruption of sertraline treatment may result in withdrawal or discontinuation syndrome. Dizziness, insomnia, anxiety, agitation, and irritability are its common symptoms. It typically occurs within a few days from drug discontinuation and lasts a few weeks. The withdrawal symptoms for sertraline are less severe and frequent than for paroxetine, and more frequent than for fluoxetine. In most cases symptoms are mild, short-lived, and resolve without treatment. More severe cases are often successfully treated by temporary reintroduction of the drug with a slower tapering off rate.

Sertraline and SSRI antidepressants in general may be associated with bruxism and other movement disorders. Sertraline appears to be associated with microscopic colitis, a rare condition of unknown aetiology.

Sexual

Like other SSRIs, sertraline is associated with sexual side effects, including sexual arousal disorder, erectile dysfunction and difficulty achieving orgasm. While nefazodone and bupropion do not have negative effects on sexual functioning, 67% of men on sertraline experienced ejaculation difficulties versus 18% before the treatment. Sexual arousal disorder, defined as “inadequate lubrication and swelling for women and erectile difficulties for men”, occurred in 12% of people on sertraline as compared with 1% of patients on placebo. The mood improvement resulting from the treatment with sertraline sometimes counteracted these side effects, so that sexual desire and overall satisfaction with sex stayed the same as before the sertraline treatment. However, under the action of placebo the desire and satisfaction slightly improved. Some people continue experiencing sexual side effects after they stop taking SSRIs.

Suicide

The US Food and Drug Administration (FDA) requires all antidepressants, including sertraline, to carry a boxed warning stating that antidepressants increase the risk of suicide in persons younger than 25 years. This warning is based on statistical analyses conducted by two independent groups of FDA experts that found a 100% increase of suicidal thoughts and behaviour in children and adolescents, and a 50% increase – in the 18-24 age group.

Suicidal ideation and behaviour in clinical trials are rare. For the above analysis, the FDA combined the results of 295 trials of 11 antidepressants for psychiatric indications in order to obtain statistically significant results. Considered separately, sertraline use in adults decreased the odds of suicidal behaviour with a marginal statistical significance by 37% or 50% depending on the statistical technique used. The authors of the FDA analysis note that “given the large number of comparisons made in this review, chance is a very plausible explanation for this difference”. The more complete data submitted later by the sertraline manufacturer Pfizer indicated increased suicidal behaviour. Similarly, the analysis conducted by the UK Medicines and Healthcare Products Regulatory Agency (MHRA) found a 50% increase of odds of suicide-related events, not reaching statistical significance, in the patients on sertraline as compared to the ones on placebo.

Overdose

Acute overdosage is often manifested by emesis, lethargy, ataxia, tachycardia and seizures. Plasma, serum or blood concentrations of sertraline and norsertraline, its major active metabolite, may be measured to confirm a diagnosis of poisoning in hospitalised patients or to aid in the medicolegal investigation of fatalities. As with most other SSRIs its toxicity in overdose is considered relatively low.

Interactions

As with other SSRIs, sertraline may increase the risk of bleeding with NSAIDs (non-steroidal anti-inflammatory drugs such as ibuprofen, naproxen, mefenamic acid), antiplatelet drugs, anticoagulants, omega-3 fatty acids, vitamin E, and garlic supplements due to sertraline’s inhibitory effects on platelet aggregation via blocking serotonin transporters on platelets. Sertraline, in particular, may potentially diminish the efficacy of levothyroxine.

Sertraline is a moderate inhibitor of CYP2D6 and CYP2B6 in vitro. Accordingly, in human trials it caused increased blood levels of CYP2D6 substrates such as metoprolol, dextromethorphan, desipramine, imipramine and nortriptyline, as well as the CYP3A4/CYP2D6 substrate haloperidol. This effect is dose-dependent; for example, co-administration with 50 mg of sertraline resulted in 20% greater exposure to desipramine, while 150 mg of sertraline led to a 70% increase. In a placebo-controlled study, the concomitant administration of sertraline and methadone caused a 40% increase in blood levels of the latter, which is primarily metabolized by CYP2B6.

Sertraline had a slight inhibitory effect on the metabolism of diazepam, tolbutamide and warfarin, which are CYP2C9 or CYP2C19 substrates; the clinical relevance of this effect was unclear. As expected from in vitro data, sertraline did not alter the human metabolism of the CYP3A4 substrates erythromycin, alprazolam, carbamazepine, clonazepam, and terfenadine; neither did it affect metabolism of the CYP1A2 substrate clozapine.

Sertraline had no effect on the actions of digoxin and atenolol, which are not metabolised in the liver. Case reports suggest that taking sertraline with phenytoin or zolpidem may induce sertraline metabolism and decrease its efficacy, and that taking sertraline with lamotrigine may increase the blood level of lamotrigine, possibly by inhibition of glucuronidation.

CYP2C19 inhibitor esomeprazole increased sertraline concentrations in blood plasma by approximately 40%.

Clinical reports indicate that interaction between sertraline and the MAOIs isocarboxazid and tranylcypromine may cause serotonin syndrome. In a placebo-controlled study in which sertraline was co-administered with lithium, 35% of the subjects experienced tremors, while none of those taking placebo did.

Sertraline may interact with grapefruit juice.

Pharmacology

Pharmacodynamics

Sertraline is a selective serotonin reuptake inhibitor (SSRI). By binding serotonin transporter (SERT) it inhibits neuronal reuptake of serotonin and potentiates serotonergic activity in the central nervous system. Over time, this leads to a downregulation of pre-synaptic 5-HT1A receptors, which is associated with an improvement in passive stress tolerance, and delayed downstream increase in expression of brain-derived neurotrophic factor (BDNF), which may contribute to a reduction in negative affective biases. It does not significantly affect norepinephrine transporter (NET), serotonin, dopamine, adrenergic, histamine, acetylcholine, GABA or benzodiazepine receptors.

Sertraline also shows relatively high activity as an inhibitor of the dopamine transporter (DAT) and antagonist of the sigma σ1 receptor (but not the σ2 receptor). However, sertraline affinity for its main target (SERT) is much greater than its affinity for σ1 receptor and DAT. Although there could be a role for the σ1 receptor in the pharmacology of sertraline, the significance of this receptor in its actions is unclear. Similarly, the clinical relevance of sertraline’s blockade of the dopamine transporter is uncertain.

Pharmacokinetics

Absorption

Following a single oral dose of sertraline, mean peak blood levels of sertraline occur between 4.5 and 8.4 hours. Bioavailability is likely linear and dose-proportional over a dose range of 150 to 200 mg. Concomitant intake of sertraline with food slightly increases sertraline peak levels and total exposure. There is an approximate 2-fold accumulation of sertraline with continuous administration and steady-state levels are reached within one week.

Distribution

Sertraline is highly plasma protein bound (98.5%) across a concentration range of 20 to 500 ng/mL. Despite the high plasma protein binding, sertraline and its metabolite desmethylsertraline at respective tested concentrations of 300 ng/mL and 200 ng/mL were found not to interfere with the plasma protein binding of warfarin and propranolol, two other highly plasma protein-bound drugs.

Metabolism

Sertraline is subject to extensive first-pass metabolism, as indicated by a small study of radiolabelled sertraline in which less than 5% of plasma radioactivity was unchanged sertraline in two males. The principal metabolic pathway for sertraline is N-demethylation into desmethylsertraline (N-desmethylsertraline) mainly by CYP2B6. Reduction, hydroxylation, and glucuronide conjugation of both sertraline and desmethylsertraline also occur. Desmethylsertraline, while pharmacologically active, is substantially (50-fold) weaker than sertraline as a serotonin reuptake inhibitor and its influence on the clinical effects of sertraline is thought to be negligible. Based on in vitro studies, sertraline is metabolized by multiple cytochrome 450 isoforms; however, it appears that in the human body CYP2C19 plays the most important role, followed by CYP2B6. In addition to the cytochrome P450 system, sertraline can be oxidatively deaminated in vitro by monoamine oxidases; however, this metabolic pathway has never been studied in vivo.

Elimination

The elimination half-life of sertraline is on average 26 hours, with a range of 13 to 45 hours. The half-life of sertraline is longer in women (32 hours) than in men (22 hours), which leads to 1.5-fold higher exposure to sertraline in women compared to men. The elimination half-life of desmethylsertraline is 62 to 104 hours.

In a small study of two males, sertraline was excreted to similar degrees in urine and faeces (40 to 45% each within 9 days). Unchanged sertraline was not detectable in urine, whereas 12 to 14% unchanged sertraline was present in faeces.

Pharmacogenomics

CYP2C19 and CYP2B6 are thought to be the key cytochrome P450 enzymes involved in the metabolism of sertraline. Relative to CYP2C19 normal (extensive) metabolisers, poor metabolisers have 2.7-fold higher levels of sertraline and intermediate metabolisers have 1.4-fold higher levels. In contrast, CYP2B6 poor metabolisers have 1.6-fold higher levels of sertraline and intermediate metabolisers have 1.2-fold higher levels.

Society and Culture

Generic Availability

The US patent for Zoloft expired in 2006, and sertraline is available in generic form and is marketed under many brand names worldwide.

In May 2020, the FDA placed Zoloft on the list of drugs currently facing a shortage.

Other Uses

Lass-Flörl et al., 2003 finds sertraline significantly inhibits phospholipase B in the fungal genus Candida, reducing virulence. It is also a very effective leishmanicide. Specifically, Palit & Ali 2008 find that sertraline kills almost all promastigotes of Leishmania donovani.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Sertraline >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Amineptine?

Introduction

Amineptine, formerly sold under the brand name Survector among others, is an atypical antidepressant of the tricyclic antidepressant (TCA) family.

It acts as a selective and mixed dopamine reuptake inhibitor and releasing agent, and to a lesser extent as a norepinephrine reuptake inhibitor.

Amineptine was developed by the French Society of Medical research in the 1960s. Introduced in France in 1978 by the pharmaceutical company Servier, amineptine soon gained a reputation for abuse due to its short-lived, but pleasant, stimulant effect experienced by some patients.

After its release into the European market, cases of hepatotoxicity emerged, some serious. This, along with the potential for abuse, led to the suspension of the French marketing authorization for Survector in 1999.

Amineptine was never approved by the US Food and Drug Administration (FDA) for marketing in the US, meaning that it is not legal to market or sell amineptine for any medical uses in the US.

Medical Uses

Amineptine was approved in France for severe clinical depression of endogenous origin in 1978.

Contraindications

  • Chorea
  • Hypersensitivity: Known hypersensitivity to amineptine, in particular antecedents of hepatitis after dosage of the product.
  • MAO inhibitors.

Precautions for Use

Warnings and precautions before taking amineptine:

  • Breast feeding.
  • Children less than 15-year of age.
  • General anaesthesia: Discontinue the drug 24 to 48 hours before anaesthesia.
  • Official sports/Olympic Games: Prohibited substance.
  • Pregnancy (first trimester).

Effects on the Foetus

  • Lacking information in humans.
  • Non-teratogenic in rodents.

Side Effects

Dermatological

Severe acne due to amineptine was first reported in 1988 by various authors – Grupper, Thioly-Bensoussan, Vexiau, Fiet, Puissant, Gourmel, Teillac, Levigne, to name a few – simultaneously in the same issue of Annales de dermatologie et de vénéréologie and in the 12 March 1988 issue of The Lancet. A year later, Dr Martin-Ortega and colleagues in Barcelona, Spain reported a case of “acneiform eruption” in a 54-year-old woman whose intake of amineptine was described as “excessive.” One year after that, Vexiau and colleagues reported six women, one of whom never admitted to using amineptine, getting severe acne concentrated in the face, back and thorax, the severity of which varied with the dosage. Most of them were treated unsuccessfully with isotretinoin (Accutane) for about 18 months; two of the three that discontinued amineptine experienced a reduction in cutaneous symptoms, with the least affected patient going into remission.

Psychiatric

Psychomotor excitation can very rarely occur with this drug.

  • Insomnia.
  • Irritability.
  • Nervousness.
  • Suicidal ideation. Seen early in the treatment, by lifting of psychomotor inhibition.

Abuse and Dependence

The risk of addiction is low, but exists nonetheless. Between 1978 and 1988, there were 186 cases of amineptine addiction reported to the French Regional Centres of Pharmacovigilance; an analysis of 155 of those cases found that they were predominantly female, and that two-thirds of cases had known risk factors for addiction. However, a 1981 study of known opiate addicts and schizophrenia patients found no drug addiction in any of the subjects. In a 1990 study of eight amineptine dependence cases, the gradual withdrawal of amineptine could be achieved without problems in six people; in two others, anxiety, psychomotor agitation, and/or bulimia appeared.

Withdrawal

Pharmacodependence is very common with amineptine compared to other antidepressants. A variety of psychological symptoms can occur during withdrawal from amineptine, such as anxiety and agitation.

Cardiovascular

Very rarely:

  • Arterial hypotension.
  • Palpitations.
  • Vasomotor episode.

Hepatic

Amineptine can rarely cause hepatitis, of the cytolytic, cholestatic varieties. Amineptine-induced hepatitis, which is sometimes preceded by a rash, is believed to be due to an immunoallergic reaction. It resolves upon discontinuation of the offending drug. The risk of getting this may or may not be genetically determined.

Additionally, amineptine is known to rarely elevate transaminases, alkaline phosphatase, and bilirubin.

Mixed hepatitis, which is very rare, generally occurs between the 15th and 30th day of treatment. Often preceded by sometimes intense abdominal pains, nausea, vomiting or a rash, the jaundice is variable. Hepatitis is either of mixed type or with cholestatic prevalence. The evolution was, in all the cases, favourable to the discontinuation of the drug. The mechanism is discussed (immunoallergic and/or toxic).

In circa 1994 Spain, there was a case associating acute pancreatitis and mixed hepatitis, after three weeks of treatment.

Lazaros and colleagues at the Western Attica General Hospital in Athens, Greece reported two cases of drug induced hepatitis 18 and 15 days of treatment.

One case of cytolytic hepatitis occurred after ingestion of only one tablet.

Gastrointestinal

Acute pancreatitis (very rare) A case associating acute pancreatitis and mixed hepatitis after three weeks of treatment.

Immunological

In 1989, Sgro and colleagues at the Centre de Pharmacovigilance in Dijon reported a case of anaphylactic shock in a woman who had been taking amineptine.

Pharmacology

Pharmacodynamics

Amineptine inhibits the reuptake of dopamine and, to a much lesser extent, of norepinephrine. In addition, it has been found to induce the release of dopamine. However, amineptine is much less efficacious as a dopamine releasing agent relative to D-amphetamine, and the drug appears to act predominantly as a dopamine reuptake inhibitor. In contrast to the case for dopamine, amineptine does not induce the release of norepinephrine, and hence acts purely as a norepinephrine reuptake inhibitor. Unlike other TCAs, amineptine interacts very weakly or not at all with the serotonin, adrenergic, dopamine, histamine, and muscarinic acetylcholine receptors. The major metabolites of amineptine have similar activity to that of the parent compound, albeit with lower potency.

No human data appear to be available for binding or inhibition of the monoamine transporters by amineptine.

Pharmacokinetics

Peak plasma levels of amineptine following a single 100 mg oral dose have been found to range between 277 and 2,215 ng/mL (818-6,544 nM), with a mean of 772 ng/mL (2,281 nM), whereas maximal plasma concentrations of its major metabolite ranged between 144 and 1,068 ng/mL (465–3,452 nM), with a mean of 471 ng/mL (1,522 nM). After a single 200 mg oral dose of amineptine, mean peak plasma levels of amineptine were around 750 to 940 ng/mL (2,216-2,777 nM), while those of its major metabolite were about 750 to 970 ng/mL (2,216-3,135 nM). The time to peak concentrations is about 1 hour for amineptine and 1.5 hours for its major metabolite. The elimination half-life of amineptine is about 0.80 to 1.0 hours and that of its major metabolite is about 1.5 to 2.5 hours. Due to their very short elimination half-lives, amineptine and its major metabolite do not accumulate significantly with repeated administration.

Society and Culture

Brand Names

Amineptine has been sold under a variety of brand names including Survector, Maneon, Directim, Neolior, Provector, and Viaspera.

Legal Status

It had been proposed that Amineptine become a Schedule I controlled substance in the United States in July 2021.

This page is based on the copyrighted Wikipedia article <https://en.wikipedia.org/wiki/Amineptine&gt;; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.