Clotiapine (Entumine) is an atypical antipsychotic of the dibenzothiazepine chemical class.
Outline
It was first introduced in a few European countries (namely, Belgium, Italy, Spain and Switzerland), Argentina, Taiwan and Israel in 1970.
Some sources regard clotiapine as a typical antipsychotic rather than atypical due to its high incidence of extrapyramidal side effects compared to the atypicals like clozapine and quetiapine, to which it is structurally related.
Despite its profile of a relatively high incidence of extrapyramidal side effects it has demonstrated efficacy in treatment-resistant individuals with schizophrenia according to a number of psychiatrists with clinical experience with it, some weak clinical evidence supports this view too.
This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Clotiapine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.
Clozapine is a psychiatric medication and is the first atypical antipsychotic (also called second-generation antipsychotic). It is primarily used to treat people with schizophrenia and schizoaffective disorders who have had an inadequate response to other antipsychotics or who have been unable to tolerate other drugs due to extrapyramidal side effects. It is also used for the treatment of psychosis in Parkinson’s disease. Clozapine is regarded as the gold-standard treatment when other medication has been insufficiently effective and its use is recommended by multiple international treatment guidelines, after resistance to earlier neuroleptic treatment is established.
The role of clozapine in treatment-resistant schizophrenia was established by a 1988 landmark study in which clozapine showed marked benefits compared to chlorpromazine in a group of patients with protracted psychosis who had already shown an inadequate response to other antipsychotics. While there are significant side effects, clozapine remains the most effective treatment when one or more other antipsychotics have had an inadequate response. The use of clozapine is associated with multiple improved outcomes, including a reduced rate of all-cause mortality, suicide and hospitalisation. In a 2013 network comparative meta-analysis of 15 antipsychotic drugs, clozapine was found to be significantly more effective than all other drugs. In a 2021 UK study, the majority of patients (over 85% of respondents) who took clozapine preferred it to their previous therapies, felt better on it and wanted to keep taking it. In a 2000 Canadian survey of 130 patients, the majority reported better satisfaction, quality of life, compliance with treatment, thinking, mood, and alertness.
Compared to other antipsychotics, clozapine has an increased risk of blood dyscrasias, in particular agranulocytosis, in the first 18 weeks of treatment. After one year, this risk reduces to that associated with most antipsychotics. Clozapine’s use is therefore reserved for people who have not responded to two other antipsychotics and is only done with stringent blood monitoring. Overall, despite the concerns relating to blood and other side effects, clozapine use is associated with a reduced mortality, especially from suicide which is a major cause of premature death in people with schizophrenia. The risk of clozapine related agranulocytosis and neutropenia warranted the mandatory use of stringent risk monitoring and management systems, which have reduced the risk of death from these adverse events to around 1 in 7,700. The association between clozapine use and specific bloods dyscrasias was first noted in the 1970s when eight deaths from agranulocytosis were noted in Finland. At the time it was not clear if this exceeded the established rate of this side effect which is also found in other antipsychotics and although the drug was not completely withdrawn, its use became limited. Clozapine became widely available in the early 1990s and remains the only treatment likely to be effective in treating resistant schizophrenia.
Common adverse effects include drowsiness, constipation, hypersalivation (increased saliva production), tachycardia, low blood pressure, blurred vision, weight gain, and dizziness. Clozapine is not normally associated with tardive dyskinesia (TD) and is recommended as the drug of choice when this is present, although some case reports describe clozapine-induced TD. Other serious risks include seizures, inflammation of the heart, high blood sugar levels, constipation. The use of this drug can rarely result in clozapine-induced gastric hypomotility syndrome which may lead to bowel obstruction and death, and in older people with psychosis, as a result of dementia it may lead to an increased risk of death. The mechanism of action is not entirely clear in the current medical literature. Clozapine is on the World Health Organization’s List of Essential Medicines. It is available as a generic medication.
Brief History
Clozapine was synthesized in 1958 by Wander AG, a Swiss pharmaceutical company, based on the chemical structure of the tricyclic antidepressant imipramine. The first test in humans in 1962 was considered a failure. Trials in Germany in 1965 and 1966 as well as a trial in Vienna in 1966 were successful. In 1967 Wander AG was acquired by Sandoz. Further trials took place in 1972 when clozapine was released in Switzerland and Austria as Leponex. Two years later it was released in West Germany and in Finland in 1975. Early testing was performed in the United States around the same time. In 1975, 16 cases of agranulocytosis leading to 8 deaths in clozapine-treated patients, reported from 6 hospitals mostly in southwestern Finland, led to concern. Analysis of the Finnish cases revealed that all the agranulocytosis cases had occurred within the first 18 weeks of treatment and the authors proposed blood monitoring during this period. The rate of agranulocytosis in Finland appeared to be 20 times higher than in the rest of the world and there was speculation that this may have been due a unique genetic diversity in the region. Whilst the drug continued to be manufactured by Sandoz, and remained available in Europe, development in the US halted.
Interest in clozapine continued in an investigational capacity in the United States because, even in the 1980s, the duration of hospitalisation, especially in State Hospitals for those with treatment resistant schizophrenia might often be measured in years rather than days. The role of clozapine in treatment resistant schizophrenia was established by the landmark Clozaril Collaborative Study Group Study #30 in which clozapine showed marked benefits compared to chlorpromazine in a group of patients with protracted psychosis and who had already shown an inadequate response to other antipsychotics. This involved both stringent blood monitoring and a double-blind design with the power to demonstrate superiority over standard antipsychotic treatment. The inclusion criteria were patients who had failed to respond to at least three previous antipsychotics and had then not responded to a single blind treatment with haloperidol (mean dose 61 mg +/- 14 mg/d). Two hundred and sixty-eight were randomised were to double blind trials of clozapine (up to 900 mg/d) or chlorpromazine (up to 1800 mg/d). 30% of the clozapine patients responded compared to 4% of the controls, with significantly greater improvement on the Brief Psychiatric Rating Scale, Clinical Global Impression Scale, and Nurses’ Observation Scale for Inpatient Evaluation; this improvement included “negative” as well as positive symptom areas. Following this study, the US Food and Drug Administration (FDA) approved its use in 1990. Cautious of this risk, however, the FDA required a black box warning for specific side effects including agranulocytosis, and took the unique step of requiring patients to be registered in a formal system of tracking so that blood count levels could be evaluated on a systematic basis.
In December 2002, clozapine was approved in the US for reducing the risk of suicide in people with schizophrenia or schizoaffective judged to be at chronic risk for suicidal behaviour. In 2005, the FDA approved criteria to allow reduced blood monitoring frequency. In 2015, the individual manufacturer Patient Registries were consolidated by request of the FDA into a single shared Patient Registry Called The Clozapine REMS Registry. Despite the demonstrated safety of the new FDA monitoring requirements, which have lower neutrophil levels and do not include total white cell counts, international monitoring has not been standardised.
Chemistry
Clozapine is a dibenzodiazepine that is structurally very similar to loxapine (originally deemed a typical antipsychotic). It is slightly soluble in water, soluble in acetone, and highly soluble in chloroform. Its solubility in water is 0.1889 mg/L (25 °C).[3] Its manufacturer, Novartis, claims a solubility of <0.01% in water (<100 mg/L).
Clinical Uses
Schizophrenia
Clozapine is usually used for people diagnosed with schizophrenia who have had an inadequate response to other antipsychotics or who have been unable to tolerate other drugs due to extrapyramidal side effects. It is also used for the treatment of psychosis in Parkinson’s Disease. It is regarded as the gold-standard treatment when other medication has been insufficiently effective and its use is recommended by multiple international treatment guidelines, supported by systematic reviews and meta-analysis. Whilst all current guidelines reserve clozapine to individuals when two other antipsychotics evidence indicates that clozapine might be used as a second line drug. Clozapine treatment has been demonstrated to produced improved outcomes in multiple domains including; a reduced risk of hospitalisation, a reduced risk of drug discontinuation, a reduction in overall symptoms and has improved efficacy in the treatment of positive psychotic symptoms of schizophrenia. Despite a range of side effects patients report good levels of satisfaction and long term adherence is favourable compared to other antipsychotics. Very long term follow-up studies reveal multiple benefits in terms of reduced mortality, with a particularly strong effect for reduced death by suicide, clozapine is the only antipsychotic known to have an effect reducing the risk of suicide or attempted suicide. Clozapine has a significant anti-aggressive effect. Clozapine is widely used in secure and forensic mental health settings where improvements in aggression, shortened admission and reductions in restrictive practice such as seclusion have been found. In secure hospitals and other settings clozapine has also been used in the treatment of borderline and antisocial personality disorder when this has been associated with violence or self-harm. Although oral treatment is almost universal clozapine has on occasion been enforced using either nasogastric or a short acting injection although in almost 50% of the approximately 100 reported cases patients agreed to take oral medication prior to the use of a coercive intervention. Clozapine has also been used off-label to treat catatonia with success in over 80% of cases.
Bipolar Disorder
On the basis of systematic reviews clozapine is recommended in some treatment guidelines as a third or fourth line treatment for bipolar disorder. Bipolar disorder is an unlicensed indication for clozapine.
Severe Personality Disorders
Clozapine is also used in emotionally unstable personality disorder and a randomised controlled trial is currently underway. The use of clozapine to treat personality disorder is uncommon and unlicensed.
Initiation
Whilst clozapine is usually initiated in hospital setting community initiation is also available. Before clozapine can be initiated multiple assessments and baseline investigations are performed. In the UK and Ireland there must be an assessment that the patient satisfies the criteria for prescription; treatment resistant schizophrenia, intolerance due to extrapyramidal symptoms of other antipsychotics or psychosis in Parkinson’s disease. Establishing a history of treatment resistance may include careful review of the medication history including the durations, doses and compliance of previous antipsychotic therapy and that these did not have an adequate clinical effect. A diagnostic review may also be performed. That could include review of antipsychotic plasma concentrations if available. The prescriber, patient, pharmacy and the laboratory performing blood counts are all registered with a specified clozapine provider who must be advised that there is no history of neutropenia from any cause. The clozapine providers collaborate by sharing information regarding patients who have had clozapine related neutropenia or agranulocytosis so that clozapine cannot be used again on license. Clozapine may only be dispensed after a satisfactory blood result has been received by the risk monitoring agency at which point an individual prescription may be released to an individual patient only.
Baseline tests usually also include; a physical examination including baseline weight, waist circumference and BMI, assessments of renal function and liver function, an ECG and other baseline bloods may also be taken to facilitate monitoring of possible myocarditis, these might include C reactive protein (CRP) and troponin. In Australia and New Zealand pre-clozapine echocardiograms are also commonly performed. A number of service protocols are available and there are variations in the extent of preclozapine work ups. Some might also include fasting lipids, HbA1c and prolactin. At the Maudsley Hospital in the UK the Treat service also routinely performs a wide variety of other investigations including multiple investigations for other causes of psychosis and comorbidities including; MRI brain imaging, thyroid function tests, B12, folate and serum calcium levels, infection screening for blood borne viruses including Hepatitis B and C, HIV and syphilis as well as screening for autoimmune psychosis by anti-NMDA, anti-VGKC and Anti-nuclear Antibody screening. Investigations used to monitor the possibility of clozapine related side effects such as myocarditis are also performed including baseline troponin, CRP and BNP and for neuroleptic malignant syndrome CK.
The dose of clozapine is initially low and gradually increased over a number of weeks. Initial doses may range from 6.5 to 12.5 mg/d increasing stepwise typically to doses in the range of 250-350 mg per day at which point an assessment of response will be performed. In the UK the average clozapine dose is 450 mg/d. But response is highly variable and some patients respond at much lower doses and vice versa.
Monitoring
During the initial dose titration phase the following are typically monitored; usually daily at first; pulse, blood pressure and since orthostatic hypotension can be problematic this should be monitored both sitting and standing. If there is a significant drop then the rate of the dose increase may be slowed, temperature.
Weekly tests include; Mandatory full blood counts are performed weekly for the first 18 weeks. In some services there will also be monitoring of markers that might indicate myocarditis; troponin, CRP and BNP although the exact tests and frequency vary between services. Weight is usually measured weekly.
Thereon other investigations and monitoring will always include full blood counts (fortnightly for 1 year then monthly). Weight, waist circumference, lipids and glucose or HbA1c may also be monitored.
Clozapine Response and Treatment Optimisation
As with other antipsychotics, and in contrast to received wisdom, responses to clozapine are typically seen soon after initiation and often within the first week. That said responses, especially those which are partial, can be delayed. Quite what an adequate trial of clozapine is, is uncertain but a recommendation is that this should be for at least 8 weeks on a plasma trough level above 350-400 micro g/L. There is considerable inter-individual variation. A significant number of patients respond at lower and also much higher plasma concentrations and some patients, especially young male smokers may never achieve these plasma levels even at doses of 900 mg/day. Options then include either increasing the dose above the licensed maximum or the addition of a drug that inhibits clozapine metabolism. Avoiding unnecessary polypharmacy is a general principle in drug treatment.
Optimising Blood Sampling
The neutrophil cut off for clozapine have shown an exceptional ability to mitigate the risk of neutropenia and agranulocytosis. There is a significant margin of safety. Some patients may have marginal neutrophil counts before and after initiation and they are at risk of premature clozapine discontinuation. A knowledge of neutrophil biology allows blood sampling optimisation. Neutrophils show a diurnal variation in response to the natural cycle of G-CSF production, they are increased in the afternoons, they are also mobilised into the circulation after exercise and smoking. Simply shifting blood sampling has been shown to avoid unnecessary discontinuations, especially in black populations. However this is a disruption to usual hospital practice. Other practical steps are to ensure that blood results become available in hours and when senior staff are available.
Underuse of Clozapine
Clozapine is widely recognised as being underused with wide variation in prescribing, especially in patients with African heritage.
Psychiatrists prescribing practices have been found to be the most significant variable regarding variance in its use. Surveys of psychiatrists attitudes to clozapine have found that many had little experience in its use, over estimated the incidence and were fearful of side effects, and did not appreciate that many patients prefer to take clozapine than other antipsychotics, are reluctant to prescribe clozapine, had little experience in its use and believed that patients treated with clozapine were less satisfied than those treated with other antipsychotics. In contrast to many psychiatrists expectations most patients believe that the blood testing and other difficulties are worth the multiple benefits that they perceive. Whilst psychiatrists fear the severe adverse effects such as agranulocytosis, patients are more concerned about hypersalivation. Clozapine is no longer actively marketed and this may also be one of the explanations for its underuse.
Despite the strong evidence and universal endorsement by national and international treatment guidelines and the experiences of patients themselves, most people eligible for clozapine are not treated with it. A large study in England found that approximately 30% of those eligible for clozapine were being treated with it. Those patients that do start clozapine usually face prolonged delay, multiple episodes of psychosis and treatments such as high dose antipsychotics or polypharmacy. Instead of two previous antipsychotics many will have been exposed to ten or more drugs which were not effective. In a study of 120 patients conducted in four hospitals in South-East London, found a mean of 9.2 episodes of antipsychotic prescription before clozapine was initiated and the mean delay in using clozapine was 5 years. Treatments that have no evidence base or are regarded as actively harmful are used instead multiple and or high-dose treatment.
Racial Disparity in the Use of Clozapine
A general finding in healthcare provision is that minority groups receive inferior treatment; this is a particular finding in the US. In the US a general finding is that compared to their white peers African American people are less likely to be prescribed the second generation antipsychotics, which are more expensive than alternatives and this was even apparent and especially so for clozapine when comparison was made in the Veterans Affairs medical system and when differences regarding socioeconomic factors were taken into account. As well as being less likely to start clozapine black patients are more likely to stop clozapine, possibly on account of benign ethnic neutropenia.
Benign Ethnic Neutropenia
Benign reductions in neutrophils are observed in individuals of all ethnic backgrounds ethnic neutropenia (BEN), neutropenia without immune dysfunction or increased liability to infection is not due to abnormal neutrophil production; although, the exact aetiology of the reduction in circulating cells remains unknown. BEN is associated with several ethnic groups, but in particular those with Black African and West African ancestry. A difficulty with the use of clozapine is that neutrophil counts have been standardised on white populations. For significant numbers of black patients the standard neutrophil count thresholds did not permit clozapine use as the thresholds did not take BEN into account. Since 2002, clozapine monitoring services in the UK have used reference ranges 0.5 × 109/l lower for patients with haematologically confirmed BEN and similar adjustments are available in the current US criteria, although with lower permissible minima. But even then significant numbers of black patients will not be eligible even though the low neutrophil counts do not in their case reflect disease. The Duffy-Null polymorphism, which protects against some types of malaria, is predictive of BEN.
Adverse Effects
Clozapine may cause serious and potentially fatal adverse effects. Clozapine carries five black box warnings, including:
Severe neutropenia (low levels of neutrophils);
Orthostatic hypotension (low blood pressure upon changing positions), including slow heart rate and fainting;
Seizures;
Myocarditis (inflammation of the heart); and
Risk of death when used in elderly people with dementia-related psychosis.
Lowering of the seizure threshold may be dose related. Increasing the dose slowly may decrease the risk for seizures and orthostatic hypotension.
Common effects include constipation, bed-wetting, night-time drooling, muscle stiffness, sedation, tremors, orthostatic hypotension, high blood sugar, and weight gain. The risk of developing extrapyramidal symptoms, such as tardive dyskinesia, is below that of typical antipsychotics; this may be due to clozapine’s anticholinergic effects. Extrapyramidal symptoms may subside somewhat after a person switches from another antipsychotic to clozapine. Sexual problems, like retrograde ejaculation, have been reported while taking clozapine. Despite the risk for numerous side effects, many side effects can be managed while continuing to take clozapine.
Neutropenia and Agranulocytosis
Clozapine Induced Neutropenia (CIN) occurs in approximately 3.8% of cases and Clozapine Induced Agranulocytosis (CIA) in 0.4%. These are potentially serious side effects and agranulocytosis can result in death. To mitigate this risk clozapine is only used with mandatory absolute neutrophil count (ANC) monitoring (neutrophils are the most abundant of the granulocytes); for example, in the United States, the Risk Evaluation and Mitigation Strategy (REMS). The exact schedules and blood count thresholds vary internationally and the thresholds at which clozapine can be used in the US has been lower than those currently used in the UK and Australasia for some time. The effectiveness of the risk management strategies used is such that deaths from these side effects are very rare occurring at approximately 1 in 7,700 patients treated. Almost all the adverse blood reactions occur within the first year of treatment and the majority within the first 18 weeks. After one year of treatment these risks reduce markedly to that seen in other antipsychotic drugs 0.01% or about 1 in 10,000 and the risk of death is markedly lower still. When reductions in neutrophil levels are noted on regular blood monitoring then, depending on the value, monitoring may be increased or, if the neutrophil count is sufficiently low, then clozapine is stopped immediately and can then no longer be used within the medicinal licence. Stopping clozapine almost always results in resolution of the neutrophil reduction. However severe agranulocytosis can result in spontaneous infection and death, is a severe decrease in the amount of a specific kind of white blood cell called granulocytes. Clozapine carries a black box warning for drug-induced agranulocytosis. Rapid point-of-care tests may simplify the monitoring for agranulocytosis.
Clozapine Rechallenge
A clozapine “rechallenge” is when someone that experienced agranulocytosis while taking clozapine starts taking the medication again. In countries in which the neutrophil thresholds are higher than those used in the US a simple approach is, if the lowest ANC had been above the US cut off, to reintroduce clozapine but with the US monitoring regime. This has been demonstrated in a large cohort of patients in a hospital in London in which it was found that of 115 patients who had had clozapine stopped according to the US criteria only 7 would have had clozapine stopped if the US cut offs had been used. Of these 62 were rechallenged, 59 continued to use clozapine without difficulty and only 1 had a fall in neutrophils below the US cut off. Other approaches have included the use of other drugs to support neutrophil counts including lithium or granulocyte colony-stimulating factor (G-CSF). However, if agranulocytosis still occurs during a rechallenge, the alternative options are limited.
Cardiac Toxicity
Clozapine can rarely cause myocarditis and cardiomyopathy. A large meta-analysis of clozapine exposure to over 250,000 people revealed that these occurred in approximately 7 in 1,000 patients treated and resulted in death in 3 and 4 in 10,000 patients exposed respectively and although myocarditis occurred almost exclusively within the first 8 weeks of treatment, cardiomyopathy can occur much later on. First manifestations of illness are fever which may be accompanied by symptoms associated with upper respiratory tract, gastrointestinal or urinary tract infection. Typically C-reactive protein (CRP) increases with the onset of fever and rises in the cardiac enzyme, troponin, occur up to 5 days later. Monitoring guidelines advise checking CRP and troponin at baseline and weekly for the first 4 weeks after clozapine initiation and observing the patient for signs and symptoms of illness. Signs of heart failure are less common and may develop with the rise in troponin. A recent case-control study found that the risk of clozapine-induced myocarditis is increased with increasing rate of clozapine dose titration, increasing age and concomitant sodium valproate. A large electronic health register study has revealed that nearly 90% of cases of suspected clozapine related myocarditis are false positives. Rechallenge after clozapine induced myocarditis has been performed and a protocol for this specialist approach has been published. A systematic review of rechallenge after myocarditis has show success in over 60% of reported cases.
Gastrointestinal Hypomotility
Another under-recognised and potentially life-threatening effect spectrum is gastrointestinal hypomotility, which may manifest as severe constipation, faecal impaction, paralytic ileus, bowel obstruction, acute megacolon, ischemia or necrosis. Colonic hypomotility has been shown to occur in up to 80% of people prescribed clozapine when gastrointestinal function is measured objectively using radiopaque markers. Clozapine-induced gastrointestinal hypomotility currently has a higher mortality rate than the better known side effect of agranulocytosis. A Cochrane review found little evidence to help guide decisions about the best treatment for gastrointestinal hypomotility caused by clozapine and other antipsychotic medication. Monitoring bowel function and the pre-emptive use of laxatives for all clozapine-treated people has been shown to improve colonic transit times and reduce serious sequelae.
Hypersalivation
Hypersalivation, or the excessive production of saliva, is one of the most common adverse effects of clozapine (30-80%). The saliva production is especially bothersome at night and first thing in the morning, as the immobility of sleep precludes the normal clearance of saliva by swallowing that occurs throughout the day. While clozapine is a muscarinic antagonist at the M1, M2, M3, and M5 receptors, clozapine is a full agonist at the M4 subset. Because M4 is highly expressed in the salivary gland, its M4 agonist activity is thought to be responsible for hypersalivation. Clozapine-induced hypersalivation is likely a dose-related phenomenon, and tends to be worse when first starting the medication. Besides decreasing the dose or slowing the initial dose titration, other interventions that have shown some benefit include systemically absorbed anticholinergic medications such as hyoscine, diphenhydramine and topical anticholinergic medications like ipratropium bromide. Mild hypersalivation may be managed by sleeping with a towel over the pillow at night.
Central Nervous System
CNS side effects include drowsiness, vertigo, headache, tremor, syncope, sleep disturbances, nightmares, restlessness, akinesia, agitation, seizures, rigidity, akathisia, confusion, fatigue, insomnia, hyperkinesia, weakness, lethargy, ataxia, slurred speech, depression, myoclonic jerks, and anxiety. Rarely seen are delusions, hallucinations, delirium, amnesia, libido increase or decrease, paranoia and irritability, abnormal EEG, worsening of psychosis, paraesthesia, status epilepticus, and obsessive compulsive symptoms. Similar to other antipsychotics clozapine rarely has been known to cause neuroleptic malignant syndrome.
Urinary Incontinence
Clozapine is linked to urinary incontinence, though its appearance may be under-recognised.
Withdrawal Effects
Abrupt withdrawal may lead to cholinergic rebound effects, such as indigestion, diarrhoea, nausea/vomiting, overabundance of saliva, profuse sweating, insomnia, and agitation. Abrupt withdrawal can also cause severe movement disorders, catatonia, and psychosis. Doctors have recommended that patients, families, and caregivers be made aware of the symptoms and risks of abrupt withdrawal of clozapine. When discontinuing clozapine, gradual dose reduction is recommended to reduce the intensity of withdrawal effects.
Weight Gain and Diabetes
In addition to hyperglycaemia, significant weight gain is frequently experienced by patients treated with clozapine. Impaired glucose metabolism and obesity have been shown to be constituents of the metabolic syndrome and may increase the risk of cardiovascular disease. The data suggest that clozapine may be more likely to cause adverse metabolic effects than some of the other atypical antipsychotics.
Pneumonia
International adverse drug effect databases indicate that clozapine use is associated with a significantly increased incidence of and death from pneumonia and this may be one of the most significant adverse events. The mechanisms for this are unknown although it has been speculated that it may be related to hypersalivation, immune effects of clozapine’s effects on the resolution of inflammation.
Overdose
Symptoms of overdose can be variable, but often include; sedation, confusion, tachycardia, seizures and ataxia. Fatalities have been reported due to clozapine overdose, though overdoses of greater than 5000 mg have been survived.
Drug Interactions
Fluvoxamine inhibits the metabolism of clozapine leading to significantly increased blood levels of clozapine.
When carbamazepine is concurrently used with clozapine, it has been shown to decrease plasma levels of clozapine significantly thereby decreasing the beneficial effects of clozapine. Patients should be monitored for “decreased therapeutic effects of clozapine if carbamazepine” is started or increased. If carbamazepine is discontinued or the dose of carbamazepine is decreased, therapeutic effects of clozapine should be monitored. The study recommends carbamazepine to not be used concurrently with clozapine due to increased risk of agranulocytosis.
Ciprofloxacin is an inhibitor of CYP1A2 and clozapine is a major CYP1A2 substrate. Randomized study reported elevation in clozapine concentration in subjects concurrently taking ciprofloxacin. Thus, the prescribing information for clozapine recommends “reducing the dose of clozapine by one-third of original dose” when ciprofloxacin and other CYP1A2 inhibitors are added to therapy, but once ciprofloxacin is removed from therapy, it is recommended to return clozapine to original dose.
Pharmacology
Pharmacodynamics
Clozapine is classified as an atypical antipsychotic drug because it binds to serotonin as well as dopamine receptors.
Clozapine is an antagonist at the 5-HT2A subunit of the serotonin receptor, putatively improving depression, anxiety, and the negative cognitive symptoms associated with schizophrenia.
A direct interaction of clozapine with the GABAB receptor has also been shown. GABAB receptor-deficient mice exhibit increased extracellular dopamine levels and altered locomotor behaviour equivalent to that in schizophrenia animal models. GABAB receptor agonists and positive allosteric modulators reduce the locomotor changes in these models.
Clozapine induces the release of glutamate and D-serine, an agonist at the glycine site of the NMDA receptor, from astrocytes, and reduces the expression of astrocytic glutamate transporters. These are direct effects that are also present in astrocyte cell cultures not containing neurons. Clozapine prevents impaired NMDA receptor expression caused by NMDA receptor antagonists.
Pharmacokinetics
The absorption of clozapine is almost complete following oral administration, but the oral bioavailability is only 60 to 70% due to first-pass metabolism. The time to peak concentration after oral dosing is about 2.5 hours, and food does not appear to affect the bioavailability of clozapine. However, it was shown that co-administration of food decreases the rate of absorption. The elimination half-life of clozapine is about 14 hours at steady state conditions (varying with daily dose).
Clozapine is extensively metabolized in the liver, via the cytochrome P450 system, to polar metabolites suitable for elimination in the urine and faeces. The major metabolite, norclozapine (desmethyl-clozapine), is pharmacologically active. The cytochrome P450 isoenzyme 1A2 is primarily responsible for clozapine metabolism, but 2C, 2D6, 2E1 and 3A3/4 appear to play roles as well. Agents that induce (e.g. cigarette smoke) or inhibit (e.g. theophylline, ciprofloxacin, fluvoxamine) CYP1A2 may increase or decrease, respectively, the metabolism of clozapine. For example, the induction of metabolism caused by smoking means that smokers require up to double the dose of clozapine compared with non-smokers to achieve an equivalent plasma concentration.
Clozapine and norclozapine (desmethyl-clozapine) plasma levels may also be monitored, though they show a significant degree of variation and are higher in women and increase with age. Monitoring of plasma levels of clozapine and norclozapine has been shown to be useful in assessment of compliance, metabolic status, prevention of toxicity, and in dose optimisation.
Society and Culture
Economics
Despite the expense of the risk monitoring and management systems required, clozapine use is highly cost effective; with a number of studies suggesting savings of tens of thousands of dollars per patient per year compared to other antipsychotics as well as advantages regarding improvements in quality of life. Clozapine is available as a generic medication.
Clozapine in the Arts
Carrie Mathison, a fictional CIA operative in the television series Homeland, secretly takes clozapine supplied by her sister for the treatment of bipolar disorder.
In the film Out of Darkness, Diana Ross played the protagonist Paulie Cooper, “a paranoid schizophrenic” who is depicted as having a dramatic improvement on clozapine.
In the television series Last Man On Earth (2015) the character Melissa has a psychotic episode and returns home and starts acting how she did pre-pandemic. Her boyfriend Todd sees her take a medication in the morning and asks her what it is. All she will say is “Santas Penis”. Todd searches medication books and finds clozapine = Clause a peen.
This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Clozapine >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.
Aripiprazole, sold under the brand names Abilify and Aristada among others, is an atypical antipsychotic. It is primarily used in the treatment of schizophrenia and bipolar disorder. Other uses include as an add-on treatment in major depressive disorder (MDD), tic disorders and irritability associated with autism. It is taken by mouth or injection into a muscle. A Cochrane review found low-quality evidence of effectiveness in treating schizophrenia.
In adults, side effects with greater than 10% incidence include weight gain, headache, akathisia, insomnia, and gastro-intestinal effects like nausea and constipation, and lightheadedness. Side effects in children are similar, and include sleepiness, increased appetite, and stuffy nose. A strong desire to gamble, binge eat, shop, and engage in sexual activity may also occur.
Common side effects include vomiting, constipation, sleepiness, dizziness, weight gain and movement disorders. Serious side effects may include neuroleptic malignant syndrome, tardive dyskinesia and anaphylaxis. It is not recommended for older people with dementia-related psychosis due to an increased risk of death. In pregnancy, there is evidence of possible harm to the baby. It is not recommended in women who are breastfeeding. It has not been very well studied in people less than 18 years old. The exact mode of action is not entirely clear but may involve effects on dopamine and serotonin.
Aripiprazole was approved for medical use in the United States in 2002. It is available as a generic medication. In 2019, it was the 101st most commonly prescribed medication in the United States, with more than 6 million prescriptions. Aripiprazole was discovered in 1988 by scientists at the Japanese firm Otsuka Pharmaceutical.
Brief History
Aripiprazole was discovered by scientists at Otsuka Pharmaceutical and was called OPC-14597. It was first published in 1995. Otsuka initially developed the drug, and partnered with Bristol-Myers Squibb (BMS) in 1999 to complete development, obtain approvals, and market aripiprazole.
It was approved by the US Food and Drug Administration (FDA) for schizophrenia in November 2002, and the European Medicines Agency in June 2004; for acute manic and mixed episodes associated with bipolar disorder on 01 October 2004; as an adjunct for major depressive disorder on 20 November 2007; and to treat irritability in children with autism on 20 November 2009. Likewise it was approved for use as a treatment for schizophrenia by the TGA of Australia in May 2003.
Aripiprazole has been approved by the FDA for the treatment of both acute manic and mixed episodes, in people older than ten years.
In 2006, the FDA required manufacturers to add a black box warning to the label, warning that older people who were given the drug for dementia-related psychosis were at greater risk of death.
In 2007, aripiprazole was approved by the FDA for the treatment of unipolar depression when used adjunctively with an antidepressant medication. That same year, BMS settled a case with the US government in which it paid $515 million; the case covered several drugs but the focus was on BMS’s off-label marketing of aripiprazole for children and older people with dementia.
In 2011 Otsuka and Lundbeck signed a collaboration to develop a depot formulation of apripiprazole.
As of 2013, Abilify had annual sales of US$7 billion. In 2013 BMS returned marketing rights to Otsuka, but kept manufacturing the drug. Also in 2013, Otsuka and Lundbeck received US and European marketing approval for an injectable depot formulation of aripiprazole.
Otsuka’s US patent on aripiprazole expired on 20 October 2014, but due to a paediatric extension, a generic did not become available until 20 April 2015. Barr Laboratories (now Teva Pharmaceuticals) initiated a patent challenge under the Hatch-Waxman Act in March 2007. On 15 November 2010, this challenge was rejected by the US District Court in New Jersey.
Otsuka’s European patent EP0367141 which would have expired on 26 October 2009, was extended by a Supplementary Protection Certificate (SPC) to 26 October 2014. The UK Intellectual Property Office decided on 04 March 2015 that the SPC could not be further extended by six months under Regulation (EC) No 1901/2006. Even if the decision is successfully appealed, protection in Europe will not extend beyond 26 April 2015.
From April 2013 to March 2014, sales of Abilify amounted to almost $6.9 billion.
In April 2015, the FDA announced the first generic versions. In October 2015, aripiprazole lauroxil, a prodrug of aripiprazole that is administered via intramuscular injection once every four to six weeks for the treatment of schizophrenia, was approved by the FDA.
In 2016, BMS settled cases with 42 US states that had charged BMS with off-label marketing to older people with dementia; BMS agreed to pay $19.5 million.
In November 2017, the FDA approved Abilify MyCite, a digital pill containing a sensor intended to record when its consumer takes their medication.
Medical Uses
Aripiprazole is primarily used for the treatment of schizophrenia or bipolar disorder.
Schizophrenia
The 2016 NICE guidance for treating psychosis and schizophrenia in children and young people recommended aripiprazole as a second line treatment after risperidone for people between 15 and 17 who are having an acute exacerbation or recurrence of psychosis or schizophrenia. A 2014 NICE review of the depot formulation of the drug found that it might have a role in treatment as an alternative to other depot formulations of second generation antipsychotics for people who have trouble taking medication as directed or who prefer it.
A 2014 Cochrane review comparing aripiprazole and other atypical antipsychotics found that it is difficult to determine differences as data quality is poor. A 2011 Cochrane review comparing aripiprazole with placebo concluded that high dropout rates in clinical trials, and a lack of outcome data regarding general functioning, behaviour, mortality, economic outcomes, or cognitive functioning make it difficult to definitively conclude that aripiprazole is useful for the prevention of relapse. A Cochrane review found only low quality evidence of effectiveness in treating schizophrenia. Accordingly, part of its methodology on quality of evidence is based on quantity of qualified studies.
A 2013 review found that it is in the middle range of 15 antipsychotics for effectiveness, approximately as effective as haloperidol and quetiapine and slightly more effective than ziprasidone, chlorpromazine, and asenapine, with better tolerability compared to the other antipsychotic drugs (4th best for weight gain, 5th best for extrapyramidal symptoms, best for prolactin elevation, 2nd best for QTc prolongation, and 5th best for sedation). The authors concluded that for acute psychotic episodes aripiprazole results in benefits in some aspects of the condition.
In 2013 the World Federation of Societies for Biological Psychiatry recommended aripiprazole for the treatment of acute exacerbations of schizophrenia as a Grade 1 recommendation and evidence level A.
The British Association for Psychopharmacology similarly recommends that all persons presenting with psychosis receive treatment with an antipsychotic, and that such treatment should continue for at least 1-2 years, as “There is no doubt that antipsychotic discontinuation is strongly associated with relapse during this period”. The guideline further notes that “Established schizophrenia requires continued maintenance with doses of antipsychotic medication within the recommended range (Evidence level A)”.
The British Association for Psychopharmacology and the World Federation of Societies for Biological Psychiatry suggest that there is little difference in effectiveness between antipsychotics in prevention of relapse, and recommend that the specific choice of antipsychotic be chosen based on each person’s preference and side effect profile. The latter group recommends switching to aripiprazole when excessive weight gain is encountered during treatment with other antipsychotics
Bipolar Disorder
Aripiprazole is effective for the treatment of acute manic episodes of bipolar disorder in adults, children, and adolescents. Used as maintenance therapy, it is useful for the prevention of manic episodes, but is not useful for bipolar depression. Thus, it is often used in combination with an additional mood stabiliser; however, co-administration with a mood stabiliser increases the risk of extrapyramidal side effects.
Major Depression
Aripiprazole is an effective add-on treatment for major depressive disorder; however, there is a greater rate of side effects such as weight gain and movement disorders. The overall benefit is small to moderate and its use appears to neither improve quality of life nor functioning. Aripiprazole may interact with some antidepressants, especially selective serotonin reuptake inhibitors (SSRIs). There are interactions with fluoxetine and paroxetine and lesser interactions with sertraline, escitalopram, citalopram, and fluvoxamine, which inhibit CYP2D6, for which aripiprazole is a substrate. CYP2D6 inhibitors increase aripiprazole concentrations to 2-3 times their normal level.
Autism
Short-term data (8 weeks) shows reduced irritability, hyperactivity, inappropriate speech, and stereotypy, but no change in lethargic behaviours. Adverse effects include weight gain, sleepiness, drooling and tremors. It is suggested that children and adolescents need to be monitored regularly while taking this medication, to evaluate if this treatment option is still effective after long-term use and note if side effects are worsening. Further studies are needed to understand if this drug is helpful for children after long term use.
Tic Disorders
Aripiprazole is approved for the treatment of Tourette’s syndrome. It is effective, safe, and well-tolerated for this use per systematic reviews and meta-analyses
Obsessive-Compulsive Disorder
A 2014 systematic review and meta-analysis concluded that add-on therapy with low dose aripiprazole is an effective treatment for obsessive-compulsive disorder (OCD) that does not improve with selective serotonin reuptake inhibitors (SSRIs) alone. The conclusion was based on the results of two relatively small, short-term trials, each of which demonstrated improvements in symptoms. Risperidone, another second-generation antipsychotic, appears to be superior to aripiprazole for this indication, and is recommended by the 2007 American Psychiatric Association guidelines. However, aripiprazole is cautiously recommended by a 2017 review on antipsychotics for OCD. Aripiprazole is not currently approved for the treatment of OCD and is instead used off-label for this indication.
Adverse Effects
In adults, side effects with greater than 10% incidence include weight gain, headache, akathisia, insomnia, and gastro-intestinal effects like nausea and constipation, and lightheadedness. Side effects in children are similar, and include sleepiness, increased appetite, and stuffy nose. A strong desire to gamble, binge eat, shop, and engage in sexual activity may also occur.
Uncontrolled movement such as restlessness, tremors, and muscle stiffness may occur.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.
There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.
Overdose
Children or adults who ingested acute overdoses have usually manifested central nervous system depression ranging from mild sedation to coma; serum concentrations of aripiprazole and dehydroaripiprazole in these people were elevated by up to 3-4 fold over normal therapeutic levels; as of 2008 no deaths had been recorded.
Interactions
Aripiprazole is a substrate of CYP2D6 and CYP3A4. Coadministration with medications that inhibit (e.g. paroxetine, fluoxetine) or induce (e.g. carbamazepine) these metabolic enzymes are known to increase and decrease, respectively, plasma levels of aripiprazole.
Precautions should be taken in people with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics along with other medications that affect blood sugar levels and should be monitored regularly for worsening of glucose control. The liquid form (oral solution) of this medication may contain up to 15 grams of sugar per dose.
Antipsychotics like aripiprazole and stimulant medications, such as amphetamine, are traditionally thought to have opposing effects to their effects on dopamine receptors: stimulants are thought to increase dopamine in the synaptic cleft, whereas antipsychotics are thought to decrease dopamine. However, it is an oversimplification to state the interaction as such, due to the differing actions of antipsychotics and stimulants in different parts of the brain, as well as the effects of antipsychotics on non-dopaminergic receptors. This interaction frequently occurs in the setting of comorbid attention-deficit hyperactivity disorder (ADHD) (for which stimulants are commonly prescribed) and off-label treatment of aggression with antipsychotics. Aripiprazole has been reported to provide some benefit in improving cognitive functioning in people with ADHD without other psychiatric comorbidities, though the results have been disputed. The combination of antipsychotics like aripiprazole with stimulants should not be considered an absolute contraindication.
Pharmacology
Pharmacodynamics
Aripiprazole’s mechanism of action is different from those of the other FDA-approved atypical antipsychotics (e.g., clozapine, olanzapine, quetiapine, ziprasidone, and risperidone). It shows differential engagement at the dopamine receptor (D2). It appears to show predominantly antagonist activity on postsynaptic D2 receptors and partial agonist activity on presynaptic D2 receptors, D3, and partially D4 and is a partial activator of serotonin (5-HT1A, 5-HT2A, 5-HT2B, 5-HT6, and 5-HT7). It also shows lower and likely insignificant effect on histamine (H1), epinephrine/norepinephrine (α), and otherwise dopamine (D4), as well as the serotonin transporter. Aripiprazole acts by modulating neurotransmission overactivity of dopamine, which is thought to mitigate schizophrenia symptoms.
As a pharmacologically unique antipsychotic with pronounced functional selectivity, characterization of this dopamine D2 partial agonist (with an intrinsic activity of ~25%) as being similar to a full agonist but at a reduced level of activity presents a misleading oversimplification of its actions; for example, among other effects, aripiprazole has been shown, in vitro, to bind to and/or induce receptor conformations (i.e. facilitate receptor shapes) in such a way as to not only prevent receptor internalisation (and, thus, lower receptor density) but even to lower the rate of receptor internalisation below that of neurons not in the presence of agonists (including dopamine) or antagonists. It is often the nature of partial agonists, including aripiprazole, to display a stabilising effect (such as on mood in this case) with agonistic activity when there are low levels of endogenous neurotransmitters (such as dopamine) and antagonistic activity in the presence of high levels of agonists associated with events such as mania, psychosis, and drug use. In addition to aripiprazole’s partial agonism and functional selectivity characteristics, its effectiveness may be mediated by its very high dopamine D2 receptor occupancy (approximately 32%, 53%, 72%, 80%, and 97% at daily dosages of 0.5 mg, 1 mg, 2 mg, 10 mg, and 40 mg respectively) as well as balanced selectivity for pre- and postsynaptic receptors (as suggested by its equal affinity for both D2S and D2L receptor forms). Aripiprazole has been characterised as possessing predominantly antagonistic activity on postsynaptic D2 receptors and partial agonist activity on presynaptic D2 receptors; however, while this explanation intuitively explains the drug’s efficacy as an antipsychotic, as degree of agonism is a function of more than a drug’s inherent properties as well as in vitro demonstration of aripiprazole’s partial agonism in cells expressing postsynaptic (D2L) receptors, it was noted that “It is unlikely that the differential actions of aripiprazole as an agonist, antagonist, or partial agonist were entirely due to differences in relative D2 receptor expression since aripiprazole was an antagonist in cells with the highest level of expression (4.6 pmol/mg) and a partial agonist in cells with an intermediate level of expression (0.5-1 pmol/mg). Instead, the current data are most parsimoniously explained by the ‘functional selectivity’ hypothesis of Lawler et al (1999)”. Aripiprazole is also a partial agonist of the D3 receptor. In healthy human volunteers, D2 and D3 receptor occupancy levels are high, with average levels ranging between approximately 71% at 2 mg/day to approximately 96% at 40 mg/day. Most atypical antipsychotics bind preferentially to extrastriatal receptors, but aripiprazole appears to be less preferential in this regard, as binding rates are high throughout the brain.
Aripiprazole is also a partial agonist of the serotonin 5-HT1A receptor (intrinsic activity = 68%). Casting doubt on the significance of aripiprazole’s agonism of 5-HT1A receptors, a PET scan study of 12 patients receiving doses ranging from 10 to 30 mg found 5-HT1A receptor occupancy to be only 16% compared to ~90% for D2. It is a very weak partial agonist of the 5-HT2A receptor (intrinsic activity = 12.7%), and like other atypical antipsychotics, displays a functional antagonist profile at this receptor. The drug differs from other atypical antipsychotics in having higher affinity for the D2 receptor than for the 5-HT2A receptor. At the 5-HT2B receptor, aripiprazole has both great binding affinity and acts as a potent inverse agonist, “Aripiprazole decreased PI hydrolysis from a basal level of 61% down to a low of 30% at 1000 nM, with an EC50 of 11 nM”. Unlike other antipsychotics, aripiprazole is a high-efficacy partial agonist of the 5-HT2C receptor (intrinsic activity = 82%) and with relatively weak affinity; this property may underlie the minimal weight gain seen in the course of therapy. At the 5-HT7 receptor, aripiprazole is a very weak partial agonist with barely measurable intrinsic activity, and hence is a functional antagonist of this receptor. Aripiprazole also shows lower but likely clinically insignificant affinity for a number of other sites, such as the histamine H1, α-adrenergic, and dopamine D4 receptors as well as the serotonin transporter, while it has negligible affinity for the muscarinic acetylcholine receptors.
Since the actions of aripiprazole differ markedly across receptor systems aripiprazole was sometimes an antagonist (e.g. at 5-HT6 and D2L), sometimes an inverse agonist (e.g. 5-HT2B), sometimes a partial agonist (e.g. D2L), and sometimes a full agonist (D3, D4). Aripiprazole was frequently found to be a partial agonist, with an intrinsic activity that could be low (D2L, 5-HT2A, 5-HT7), intermediate (5-HT1A), or high (D4, 5-HT2C). This mixture of agonist actions at D2-dopamine receptors is consistent with the hypothesis that aripiprazole has ‘functionally selective’ actions. The ‘functional-selectivity’ hypothesis proposes that a mixture of agonist/partial agonist/antagonist actions are likely. According to this hypothesis, agonists may induce structural changes in receptor conformations that are differentially ‘sensed’ by the local complement of G proteins to induce a variety of functional actions depending upon the precise cellular milieu. The diverse actions of aripiprazole at D2-dopamine receptors are clearly cell-type specific (e.g. agonism, antagonism, partial agonism), and are most parsimoniously explained by the ‘functional selectivity’ hypothesis.
Since 5-HT2C receptors have been implicated in the control of depression, OCD, and appetite, agonism at the 5-HT2C receptor might be associated with therapeutic potential in obsessive compulsive disorder, obesity, and depression. 5-HT2C agonism has been demonstrated to induce anorexia via enhancement of serotonergic neurotransmission via activation of 5-HT2C receptors; it is conceivable that the 5-HT2C agonist actions of aripiprazole may, thus, be partly responsible for the minimal weight gain associated with this compound in clinical trials. In terms of potential action as an anti-obsessional agent, it is worthwhile noting that a variety of 5-HT2A/5-HT2C agonists have shown promise as anti-obsessional agents, yet many of these compounds are hallucinogenic, presumably due to 5-HT2A activation. Aripiprazole has a favourable pharmacological profile in being a 5-HT2A antagonist and a 5-HT2C partial agonist. Based on this profile, one can predict that aripiprazole may have anti-obsessional and anorectic actions in humans.
Wood and Reavill’s (2007) review of published and unpublished data proposed that, at therapeutically relevant doses, aripiprazole may act essentially as a selective partial agonist of the D2 receptor without significantly affecting the majority of serotonin receptors. A positron emission tomography imaging study found that 10 to 30 mg/day aripiprazole resulted in 85 to 95% occupancy of the D2 receptor in various brain areas (putamen, caudate, ventral striatum) versus 54 to 60% occupancy of the 5-HT2A receptor and only 16% occupancy of the 5-HT1A receptor. It has been suggested that the low occupancy of the 5-HT1A receptor by aripiprazole may have been an erroneous measurement however.
Aripiprazole acts by modulating neurotransmission overactivity on the dopaminergic mesolimbic pathway, which is thought to be a cause of positive schizophrenia symptoms. Due to its agonist activity on D2 receptors, aripiprazole may also increase dopaminergic activity to optimal levels in the mesocortical pathways where it is reduce.
Pharmacokinetics
Aripiprazole displays linear kinetics and has an elimination half-life of approximately 75 hours. Steady-state plasma concentrations are achieved in about 14 days. Cmax (maximum plasma concentration) is achieved 3-5 hours after oral dosing. Bioavailability of the oral tablets is about 90% and the drug undergoes extensive hepatic metabolization (dehydrogenation, hydroxylation, and N-dealkylation), principally by the enzymes CYP2D6 and CYP3A4. Its only known active metabolite is dehydro-aripiprazole, which typically accumulates to approximately 40% of the aripiprazole concentration. The parenteral drug is excreted only in traces, and its metabolites, active or not, are excreted via faeces and urine.
Chemistry
Aripiprazole is a phenylpiperazine and is chemically related to nefazodone, etoperidone, and trazodone. It is unusual in having twelve known crystalline polymorphs.
Society and Culture
Classification
Aripiprazole has been described as the prototypical third-generation antipsychotic, as opposed to first-generation (typical) antipsychotics like haloperidol and second-generation (atypical) antipsychotics like clozapine. It has received this classification due to its partial agonism of dopamine receptors, and is the first of its kind in this regard among antipsychotics, which before aripiprazole acted only as dopamine receptor antagonists. The introduction of aripiprazole has led to a paradigm shift from a dopamine antagonist-based approach to a dopamine agonist-based approach for antipsychotic drug development.
Research
Attention Deficit Hyperactivity Disorder
Aripiprazole was under development for the treatment of attention-deficit hyperactivity disorder (ADHD), but development for this indication was discontinued. A 2017 meta review found only preliminary evidence (studies with small sample sizes and methodological problems) for aripiprazole in the treatment of ADHD. A 2013 systematic review of aripiprazole for ADHD similarly reported that there is insufficient evidence of effectiveness to support aripiprazole as a treatment for the condition. Although all 6 non-controlled open-label studies in the review reported effectiveness, two small randomised controlled trials found that aripiprazole did not significantly decrease ADHD symptoms. A high rate of adverse effects with aripiprazole such as weight gain, sedation, and headache was noted. Most research on aripiprazole for ADHD is in children and adolescents. Evidence on aripiprazole specifically for adult ADHD appears to be limited to a single case report.
Substance Dependence
Aripiprazole has been studied for the treatment of amphetamine dependence and other substance use disorders, but more research is needed to support aripiprazole for these potential uses. Available evidence of aripiprazole for amphetamine dependence is mixed. Some studies have reported attenuation of the effects of amphetamines by aripiprazole, whereas other studies have reported both enhancement of the effects of amphetamines and increased use of amphetamines by aripiprazole. As such, aripiprazole may not only be ineffective but potentially harmful for treatment of amphetamine dependence, and caution is warranted with regard to its use for such purposes.
Other Uses
Aripiprazole is under development for the treatment of agitation and pervasive child development disorders. As of May 2021, it is in phase 3 clinical trials for these indications.
This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Aripiprazole >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.
It is marketed by Janssen Pharmaceuticals. An extended release formulation is available that uses the OROS extended release system to allow for once-daily dosing. Paliperidone palmitate is a long-acting injectable formulation of paliperidone palmitoyl ester.
It is on the World Health Organisation’s List of Essential Medicines.
Brief History
Paliperidone (as Invega) was approved by the US Food and Drug Administration (FDA) for the treatment of schizophrenia in 2006. Paliperidone was approved by the FDA for the treatment of schizoaffective disorder in 2009. The long-acting injectable form of paliperidone, marketed as Invega Sustenna in US and Xeplion in Europe, was approved by the FDA on 31 July 2009. It is the only available brand in Bangladesh under the brand name “Palimax ER” manufactured & marketed by ACI Pharmaceuticals.
It was initially approved in Europe in 2007 for schizophrenia, the extended release form and use for schizoaffective disorder were approved in Europe in 2010, and extension to use in adolescents older than 15 years old was approved in 2014.
Medical Uses
It is used for the treatment of schizophrenia and schizoaffective disorder.
Adverse Effects
Very Common (>10% incidence):
Headache.
Tachycardia.
Somnolence (causes less sedation than most atypical antipsychotics).
Insomnia.
Hyperprolactinaemia (seems to cause comparable prolactin elevation to its parent drug, risperidone).
Sexual Dysfunction.
Common (1-10% incidence):
Cough.
Extrapyramidal side effects (EPSE; e.g. dystonia, akathisia, muscle rigidity, parkinsonism. It appears to produce similar EPSE to risperidone, asenapine and ziprasidone and more EPSE than olanzapine, clozapine, aripiprazole, quetiapine, amisulpride and sertindole).
Orthostatic hypotension.
Weight gain (tends to produce a moderate degree of weight gain, possibly related to its potent blockade of the 5-HT2C receptor).
QT interval prolongation (tends to produce less QT interval prolongation than most other atypical antipsychotics and approximately as much QT interval prolongation as aripiprazole and lurasidone).
Nasopharyngitis.
Anxiety.
Indigestion.
Constipation.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.
There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.
Deaths
In April 2014, it was reported that 21 Japanese people who had received shots of the long-acting injectable paliperidone to date had died, out of 10,700 individuals prescribed the drug.
Pharmacology
Paliperidone is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed paliperidone and risperidone act via similar, if not identical, pathways. Its efficacy is believed to result from central dopaminergic and serotonergic antagonism. Food is known to increase the absorption of Invega type ER OROS prolonged-release tablets. Food increased exposure of paliperidone by up to 50-60%, however, half-life was not significantly affected. The effect was probably due to a delay in the transit of the ER OROS formulation in the upper part of the GI channel, resulting in increased absorption.
The half-life is 23 hours.
Risperidone and its metabolite paliperidone are reduced in efficacy by P-glycoprotein inducers such as St John’s wort.
Brand Names
On 18 May 2015, a new formulation of paliperidone palmitate was approved by the FDA under the brand name Invega Trinza. A similar 3 -monthly injection of prolonged release suspension was approved in 2016 by the European Medicines Agency originally under the brand name Paliperidone Janssen, later renamed to Trevicta. On 01 September 2021, a newer formulation of paliperidone palmitate, Invega Hafyera, was approved by the FDA which is available as an injection every six months.
It is taken either by mouth or by injection into a muscle. The injectable version is long-acting and lasts for about two weeks.
Common side effects include movement problems, sleepiness, dizziness, trouble seeing, constipation, and increased weight. Serious side effects may include the potentially permanent movement disorder tardive dyskinesia, as well as neuroleptic malignant syndrome, an increased risk of suicide, and high blood sugar levels. In older people with psychosis as a result of dementia, it may increase the risk of dying. It is unknown if it is safe for use in pregnancy. Its mechanism of action is not entirely clear, but is believed to be related to its action as a dopamine and serotonin antagonist.
Study of risperidone began in the late 1980s and it was approved for sale in the United States in 1993. It is on the World Health Organisation’s List of Essential Medicines. It is available as a generic medication. In 2018, it was the 159th most commonly prescribed medication in the United States, with more than 3 million prescriptions.
Medical Uses
Risperidone is mainly used for the treatment of schizophrenia, bipolar disorder, and irritability associated with autism.
Schizophrenia
Risperidone is effective in treating psychogenic polydipsia and the acute exacerbations of schizophrenia.
Studies evaluating the utility of risperidone by mouth for maintenance therapy have reached varying conclusions. A 2012 systematic review concluded that evidence is strong that risperidone is more effective than all first-generation antipsychotics other than haloperidol, but that evidence directly supporting its superiority to placebo is equivocal. A 2011 review concluded that risperidone is more effective in relapse prevention than other first- and second-generation antipsychotics with the exception of olanzapine and clozapine. A 2016 Cochrane review suggests that risperidone reduces the overall symptoms of schizophrenia, but firm conclusions are difficult to make due to very low-quality evidence. Data and information are scarce, poorly reported, and probably biased in favour of risperidone, with about half of the included trials developed by drug companies. The article raises concerns regarding the serious side effects of risperidone, such as parkinsonism.
Long-acting injectable formulations of antipsychotic drugs provide improved compliance with therapy and reduce relapse rates relative to oral formulations. The efficacy of risperidone long-acting injection appears to be similar to that of long acting injectable forms of first generation antipsychotics.
Bipolar Disorder
Second-generation antipsychotics, including risperidone, are effective in the treatment of manic symptoms in acute manic or mixed exacerbations of bipolar disorder. In children and adolescents, risperidone may be more effective than lithium or divalproex, but has more metabolic side effects. As maintenance therapy, long-acting injectable risperidone is effective for the prevention of manic episodes but not depressive episodes. The long-acting injectable form of risperidone may be advantageous over long acting first generation antipsychotics, as it is better tolerated (fewer extrapyramidal effects) and because long acting injectable formulations of first generation antipsychotics may increase the risk of depression.
Autism
Compared to placebo, risperidone treatment reduces certain problematic behaviours in autistic children, including aggression toward others, self-injury, challenging behaviour, and rapid mood changes. The evidence for its efficacy appears to be greater than that for alternative pharmacological treatments. Weight gain is an important adverse effect. Some authors recommend limiting the use of risperidone and aripiprazole to those with the most challenging behavioural disturbances in order to minimise the risk of drug-induced adverse effects. Evidence for the efficacy of risperidone in autistic adolescents and young adults is less persuasive.
Other Uses
Risperidone has shown promise in treating therapy-resistant obsessive-compulsive disorder, when serotonin reuptake inhibitors are not sufficient.
While antipsychotic medications such as risperidone have a slight benefit in people with dementia, they have been linked to higher incidences of death and stroke. Because of this increased risk of death, treatment of dementia-related psychosis with risperidone is not US Drug and Food Administration (FDA) approved.
Forms
Available forms of risperidone include tablet, oral dissolving tablet, oral solution, and powder and solvent for suspension for injection.
Adverse Effects
Common side effects include movement problems, sleepiness, dizziness, trouble seeing, constipation, and increased weight. About 9 to 20% of people gained more than 7% of the baseline weight depending on the dose. Serious side effects may include the potentially permanent movement disorder tardive dyskinesia, as well as neuroleptic malignant syndrome, an increased risk of suicide, and high blood sugar levels. In older people with psychosis as a result of dementia, it may increase the risk of dying.
While atypical antipsychotics appear to have a lower rate of movement problems as compared to typical antipsychotics, risperidone has a high risk of movement problems among the atypicals. Atypical antipsychotics however are associated with a greater amount of weight gain.
Drug Interactions
Carbamazepine and other enzyme inducers may reduce plasma levels of risperidone.
If a person is taking both carbamazepine and risperidone, the dose of risperidone will likely need to be increased.
The new dose should not be more than twice the patient’s original dose.
CYP2D6 inhibitors, such as SSRI medications, may increase plasma levels of risperidone and those medications.
Since risperidone can cause hypotension, its use should be monitored closely when a patient is also taking antihypertensive medicines to avoid severe low blood pressure.
Risperidone and its metabolite paliperidone are reduced in efficacy by P-glycoprotein inducers such as St John’s wort.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotic treatment to avoid acute withdrawal syndrome or rapid relapse. Some have argued the additional somatic and psychiatric symptoms associated with dopaminergic super-sensitivity, including dyskinesia and acute psychosis, are common features of withdrawal in individuals treated with neuroleptics. This has led some to suggest the withdrawal process might itself be schizomimetic, producing schizophrenia-like symptoms even in previously healthy patients, indicating a possible pharmacological origin of mental illness in a yet unknown percentage of patients currently and previously treated with antipsychotics. This question is unresolved, and remains a highly controversial issue among professionals in the medical and mental health communities, as well as the public.
Dementia
Older people with dementia-related psychosis are at a higher risk of death if they take risperidone compared to those who do not. Most deaths are related to heart problems or infections.
Pharmacology
Pharmacodynamics
Risperidone has been classified as a “qualitatively atypical” antipsychotic agent with a relatively low incidence of extrapyramidal side effects (when given at low doses) that has more pronounced serotonin antagonism than dopamine antagonism. Risperidone contains the functional groups of benzisoxazole and piperidine as part of its molecular structure. Although not a butyrophenone, it was developed with the structures of benperidol and ketanserin as a basis. It has actions at several 5-HT (serotonin) receptor subtypes. These are 5-HT2C, linked to weight gain, 5-HT2A, linked to its antipsychotic action and relief of some of the extrapyramidal side effects experienced with the typical neuroleptics.[46]
It was recently found that D-amino acid oxidase, the enzyme that catalyses the breakdown of D-amino acids (e.g. D-alanine and D-serine – the neurotransmitters) is inhibited by risperidone.
Risperidone acts on the following receptors:
Receptors
Description
Dopamine
This drug is an antagonist of the D1 (D1, and D5) as well as the D2 family (D2, D3 and D4) receptors, with 70-fold selectivity for the D2 family. This drug has “tight binding” properties, which means it has a long half-life and like other antipsychotics, risperidone blocks the mesolimbic pathway, the prefrontal cortex limbic pathway, and the tuberoinfundibular pathway in the central nervous system. Risperidone may induce extrapyramidal side effects, akathisia and tremors, associated with diminished dopaminergic activity in the striatum. It can also cause sexual side effects, galactorrhoea, infertility, gynecomastia and, with chronic use reduced bone mineral density leading to breaks, all of which are associated with increased prolactin secretion.
Serotonin
Its action at these receptors may be responsible for its lower extrapyramidal side effect liability (via the 5-HT2A/2C receptors) and improved negative symptom control compared to typical antipsychotics such as haloperidol for instance. Its antagonistic actions at the 5-HT2C receptor may account, in part, for its weight gain liability.
Alpha α1 Adrenergic
This action accounts for its orthostatic hypotensive effects and perhaps some of the sedating effects of risperidone.
Alpha α2 Adrenergic
Perhaps greater positive, negative, affective and cognitive symptom control.
Histamine H1
Effects on these receptors account for its sedation and reduction in vigilance. This may also lead to drowsiness and weight gain.
Voltage-Gated Sodium Channels
Because it accumulates in synaptic vesicles, Risperidone inhibits voltage-gated sodium channels at clinically used concentrations. Though this medication possesses similar effects to other typical and atypical antipsychotics, it does not possess an affinity for the muscarinic acetylcholine receptors. In many respects, this medication can be useful as an “acetylcholine release-promoter” similar to gastrointestinal drugs such as metoclopramide and cisapride.
Pharmacokinetics
Risperidone undergoes hepatic metabolism and renal excretion. Lower doses are recommended for patients with severe liver and kidney disease. The active metabolite of risperidone, paliperidone, is also used as an antipsychotic.
Society and Culture
Regulatory Status
Risperidone was approved by the FDA in 1993 for the treatment of schizophrenia. In 2003, the FDA approved risperidone for the short-term treatment of the mixed and manic states associated with bipolar disorder. In 2006, the FDA approved risperidone for the treatment of irritability in autistic children and adolescents. The FDA’s decision was based in part on a study of autistic people with severe and enduring problems of violent meltdowns, aggression, and self-injury; risperidone is not recommended for autistic people with mild aggression and explosive behaviour without an enduring pattern. On 22 August 2007, risperidone was approved as the only drug agent available for treatment of schizophrenia in youths, ages 13-17; it was also approved that same day for treatment of bipolar disorder in youths and children, ages 10-17, joining lithium.
Availability
Janssen’s patent on risperidone expired on 29 December 2003, opening the market for cheaper generic versions from other companies, and Janssen’s exclusive marketing rights expired on 29 June 2004 (the result of a paediatric extension). It is available under many brand names worldwide.
Risperidone is available as a tablet, an oral solution, and an ampule, which is a depot injection.
Lawsuits
On 11 April 2012, Johnson & Johnson (J&J) and its subsidiary Janssen Pharmaceuticals Inc. were fined $1.2 billion by Judge Timothy Davis Fox of the Sixth Division of the Sixth Judicial Circuit of the US state of Arkansas. The jury found the companies had downplayed multiple risks associated with risperidone (Risperdal). The verdict was later reversed by the Arkansas State Supreme court.
In August 2012, Johnson & Johnson agreed to pay $181 million to 36 US states in order to settle claims that it had promoted risperidone and paliperidone for off-label uses including for dementia, anger management, and anxiety.
In November 2013, J&J was fined $2.2 billion for illegally marketing risperidone for use in people with dementia.
In 2015, Steven Brill posted a 15-part investigative journalism piece on J&J in The Huffington Post, called “America’s most admired lawbreaker”, which was focused on J&J’s marketing of risperidone.
J&J has faced numerous civil lawsuits on behalf of children who were prescribed risperidone who grew breasts (a condition called gynecomastia); as of July 2016 there were about 1,500 cases in Pennsylvania state court in Philadelphia, and there had been a February 2015 verdict against J&J with $2.5 million awarded to a man from Alabama, a $1.75M verdict against J&J that November, and in 2016 a $70 million verdict against J&J. In October, 2019, a jury awarded a Pennsylvania man $8 billion in a verdict against J&J.
Names
Brand names include Risperdal, Risperdal Consta, Risperdal M-Tab, Risperdal Quicklets, and Risperlet.
Olanzapine/fluoxetine (trade name Symbyax, created by Eli Lilly and Company) is a fixed-dose combination medication containing olanzapine (Zyprexa), an atypical antipsychotic, and fluoxetine (Prozac), a selective serotonin reuptake inhibitor (SSRI). Olanzapine/fluoxetine is primarily used to treat the depressive episodes of bipolar I disorder as well as treatment-resistant depression.
Medical Uses
Olanzapine/fluoxetine was approved by the US Food and Drug Administration (FDA) to treat the depressive episodes of bipolar I disorder in 2003. In 2009, it was granted approval for the treatment of treatment-resistant depression.
Olanzapine/fluoxetine, or other antidepressant/antipsychotic combinations, are sometimes prescribed off-label for anxiety disorders, eating disorders, obsessive-compulsive disorder (OCD), and posttraumatic stress disorder (PTSD).
Side Effects
Possible side effects of olanzapine/fluoxetine include all those of the two component drugs: olanzapine (side effects) and fluoxetine (side effects). Common side effects include suicidal thoughts, increased appetite, weight gain, drowsiness, fatigue, dry mouth, swelling, tremor, blurred vision, and difficulty concentrating.
Olanzapine/fluoxetine could produce a severe allergic reaction and should not be used if the patient has previously experienced an allergic reaction to either fluoxetine or olanzapine.
Olanzapine is correlated with an increase in blood sugar. Patients with diabetes, or those at risk for developing it, require careful monitoring.
In rare cases, olanzapine/fluoxetine may cause neuroleptic malignant syndrome.
Like other SSRIs, olanzapine/fluoxetine carries a boxed warning stating that it could increase the risk of suicidal thoughts and behaviours in patients aged 24 and under. The warning also states that olanzapine/fluoxetine may increase the risk of death in elderly patients with dementia-related psychosis.
For schizophrenia, it can be used for both new-onset disease and long-term maintenance. It is taken by mouth or by injection into a muscle.
Common side effects include weight gain, movement disorders, dizziness, feeling tired, constipation, and dry mouth. Other side effects include low blood pressure with standing, allergic reactions, neuroleptic malignant syndrome, high blood sugar, seizures, gynecomastia, erectile dysfunction, and tardive dyskinesia. In older people with dementia, its use increases the risk of death. Use in the later part of pregnancy may result in a movement disorder in the baby for some time after birth. Although how it works is not entirely clear, it blocks dopamine and serotonin receptors.
Brief History
Olanzapine was patented in 1971 and approved for medical use in the United States in 1996. It is available as a generic medication. In 2017, it was the 239th-most commonly prescribed medication in the United States, with more than two million prescriptions. Lilly also markets olanzapine in a fixed-dose combination with fluoxetine as olanzapine/fluoxetine (Symbyax).
Chemical Synthesis
The preparation of olanzapine was first disclosed in a series of patents from Eli Lilly & Co. in the 1990s. In the final two steps, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile was reduced with stannous chloride in ethanol to give the substituted thienobenzodiazepine ring system, and this was treated with methylpiperazine in a mixture of dimethyl sulfoxide and toluene as solvent to produce the drug.
Medical Uses
Schizophrenia
The first-line psychiatric treatment for schizophrenia is antipsychotic medication, with olanzapine being one such medication. Olanzapine appears to be effective in reducing symptoms of schizophrenia, treating acute exacerbations, and treating early-onset schizophrenia. The usefulness of maintenance therapy, however, is difficult to determine, as more than half of people in trials quit before the 6-week completion date. Treatment with olanzapine (like clozapine) may result in increased weight gain and increased glucose and cholesterol levels when compared to most other second-generation antipsychotic drugs used to treat schizophrenia.
Comparison
The UK National Institute for Health and Care Excellence (NICE), the British Association for Psychopharmacology, and the World Federation of Societies for Biological Psychiatry suggest that little difference in effectiveness is seen between antipsychotics in prevention of relapse, and recommend that the specific choice of antipsychotic be chosen based on a person’s preference and the drug’s side-effect profile. The US Agency for Healthcare Research and Quality concludes that olanzapine is not different from haloperidol in the treatment of positive symptoms and general psychopathology, or in overall assessment, but that it is superior for the treatment of negative and depressive symptoms. It has a lower risk of causing movement disorders than typical antipsychotics.
In a 2013 comparison of fifteen antipsychotic drugs in schizophrenia, olanzapine was ranked third in efficacy. It was 5% more effective than risperidone (fourth), 24-27% more effective than haloperidol, quetiapine, and aripiprazole, and 33% less effective than clozapine (first). A 2013 review of first-episode schizophrenia concluded that olanzapine is superior to haloperidol in providing a lower discontinuation rate, and in short-term symptom reduction, response rate, negative symptoms, depression, cognitive function, discontinuation due to poor efficacy, and long-term relapse, but not in positive symptoms or on the clinical global impressions (CGI) score. In contrast, pooled second-generation antipsychotics showed superiority to first-generation antipsychotics only against the discontinuation, negative symptoms (with a much larger effect seen among industry- compared to government-sponsored studies), and cognition scores. Olanzapine caused less extrapyramidal side effects and less akathisia, but caused significantly more weight gain, serum cholesterol increase, and triglyceride increase than haloperidol.
A 2012 review concluded that among ten atypical antipsychotics, only clozapine, olanzapine, and risperidone were better than first-generation antipsychotics. A 2011 review concluded that neither first- nor second-generation antipsychotics produce clinically meaningful changes in CGI scores, but found that olanzapine and amisulpride produce larger effects on the PANSS and BPRS batteries than five other second-generation antipsychotics or pooled first-generation antipsychotics. A 2010 Cochrane systematic review found that olanzapine may have a slight advantage in effectiveness when compared to aripiprazole, quetiapine, risperidone, and ziprasidone. No differences in effectiveness were detected when comparing olanzapine to amisulpride and clozapine. A 2014 meta-analysis of nine published trials having minimum duration six months and median duration 52 weeks concluded that olanzapine, quetiapine, and risperidone had better effects on cognitive function than amisulpride and haloperidol.
Bipolar Disorder
Olanzapine is recommended by NICE as a first-line therapy for the treatment of acute mania in bipolar disorder. Other recommended first-line treatments are haloperidol, quetiapine, and risperidone. It is recommended in combination with fluoxetine as a first-line therapy for acute bipolar depression, and as a second-line treatment by itself for the maintenance treatment of bipolar disorder.
The Network for Mood and Anxiety Treatments recommends olanzapine as a first-line maintenance treatment in bipolar disorder and the combination of olanzapine with fluoxetine as second-line treatment for bipolar depression.
A review on the efficacy of olanzapine as maintenance therapy in patients with bipolar disorder was published by Dando & Tohen in 2006. A 2014 meta-analysis concluded that olanzapine with fluoxetine was the most effective among nine treatments for bipolar depression included in the analysis.
Other Uses
Olanzapine may be useful in promoting weight gain in underweight adult outpatients with anorexia nervosa. However, no improvement of psychological symptoms was noted.
Olanzapine has been shown to be helpful in addressing a range of anxiety and depressive symptoms in individuals with schizophrenia and schizoaffective disorders, and has since been used in the treatment of a range of mood and anxiety disorders. Olanzapine is no less effective than lithium or valproate and more effective than placebo in treating bipolar disorder. It has also been used for Tourette syndrome and stuttering.
Olanzapine has been studied for the treatment of hyperactivity, aggressive behaviour, and repetitive behaviours in autism.
Olanzapine is frequently prescribed off-label for the treatment of insomnia, including difficulty falling asleep and staying asleep. The daytime sedation experienced with olanzapine is generally comparable to quetiapine and lurasidone, which is a frequent complaint in clinical trials. In some cases, the sedation due to olanzapine impaired the ability of people to wake up at a consistent time every day. Some evidence of efficacy for treating insomnia is seen, but long-term studies (especially for safety) are still needed.
Olanzapine has been recommended to be used in antiemetic regimens in people receiving chemotherapy that has a high risk for vomiting.
Specific Populations
Pregnancy and Lactation
Olanzapine is associated with the highest placental exposure of any atypical antipsychotic. Despite this, the available evidence suggests it is safe during pregnancy, although the evidence is insufficiently strong to say anything with a high degree of confidence. Olanzapine is associated with weight gain, which according to recent studies, may put olanzapine-treated patients’ offspring at a heightened risk for neural tube defects (e.g. spina bifida). Breastfeeding in women taking olanzapine is advised against because olanzapine is secreted in breast milk, with one study finding that the exposure to the infant is about 1.8% that of the mother.
Elderly
Citing an increased risk of stroke, in 2004, the Committee on the Safety of Medicines in the UK issued a warning that olanzapine and risperidone, both atypical antipsychotic medications, should not be given to elderly patients with dementia. In the US, olanzapine comes with a black box warning for increased risk of death in elderly patients. It is not approved for use in patients with dementia-related psychosis. A BBC investigation in June 2008 found that this advice was being widely ignored by British doctors. Evidence suggested that the elderly are more likely to experience weight gain on olanzapine compared to aripiprazole and risperidone.
The principal side effect of olanzapine is weight gain, which may be profound in some cases and/or associated with derangement in blood-lipid and blood-sugar profiles (see section metabolic effects). A 2013 meta-analysis of the efficacy and tolerance of 15 antipsychotic drugs (APDs) found that it had the highest propensity for causing weight gain out of the 15 APDs compared with an SMD of 0.74. Extrapyramidal side effects, although potentially serious, are infrequent to rare from olanzapine, but may include tremors and muscle rigidity.
It is not recommended to be used by IM injection in acute myocardial infarction, bradycardia, recent heart surgery, severe hypotension, sick sinus syndrome, and unstable angina.
Several patient groups are at a heightened risk of side effects from olanzapine and antipsychotics in general. Olanzapine may produce nontrivial high blood sugar in people with diabetes mellitus. Likewise, the elderly are at a greater risk of falls and accidental injury. Young males appear to be at heightened risk of dystonic reactions, although these are relatively rare with olanzapine. Most antipsychotics, including olanzapine, may disrupt the body’s natural thermoregulatory systems, thus permitting excursions to dangerous levels when situations (exposure to heat, strenuous exercise) occur.
Other side effects include galactorrhoea, amenorrhea, gynecomastia, and erectile dysfunction (impotence).
Paradoxical Effects
Olanzapine is used therapeutically to treat serious mental illness. Occasionally, it can have the opposite effect and provoke serious paradoxical reactions in a small subgroup of people, causing unusual changes in personality, thoughts, or behaviour; hallucinations and excessive thoughts about suicide have also been linked to olanzapine use.
Drug-Induced OCD
Many different types of medication can create or induce pure obsessive-compulsive disorder (OCD) in patients who have never had symptoms before. A new chapter about OCD in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (2013) now specifically includes drug-induced OCD.
Atypical antipsychotics (second-generation antipsychotics), such as olanzapine (Zyprexa), have been proven to induce de novo OCD in patients.
Metabolic Effects
The US Food and Drug Administration (FDA) requires all atypical antipsychotics to include a warning about the risk of developing hyperglycaemia and diabetes, both of which are factors in the metabolic syndrome. These effects may be related to the drugs’ ability to induce weight gain, although some reports have been made of metabolic changes in the absence of weight gain. Studies have indicated that olanzapine carries a greater risk of causing and exacerbating diabetes than another commonly prescribed atypical antipsychotic, risperidone. Of all the atypical antipsychotics, olanzapine is one of the most likely to induce weight gain based on various measures. The effect is dose dependent in humans and animal models of olanzapine-induced metabolic side effects. There are some case reports of olanzapine-induced diabetic ketoacidosis. Olanzapine may decrease insulin sensitivity, though one 3-week study seems to refute this. It may also increase triglyceride levels.
Despite weight gain, a large multicentre, randomised National Institute of Mental Health study found that olanzapine was better at controlling symptoms because patients were more likely to remain on olanzapine than the other drugs. One small, open-label, nonrandomised study suggests that taking olanzapine by orally dissolving tablets may induce less weight gain, but this has not been substantiated in a blinded experimental setting.
Post-Injection Delirium/Sedation Syndrome
Postinjection delirium/sedation syndrome (PDSS) is a rare syndrome that is specific to the long-acting injectable formulation of olanzapine, olanzapine pamoate. The incidence of PDSS with olanzapine pamoate is estimated to be 0.07% of administrations, and is unique among other second-generation, long-acting antipsychotics (e.g. paliperidone palmitate), which do not appear to carry the same risk.[70] PDSS is characterised by symptoms of delirium (e.g. confusion, difficulty speaking, and uncoordinated movements) and sedation. Most people with PDSS exhibit both delirium and sedation (83%). Although less specific to PDSS, a majority of cases (67%) involved a feeling of general discomfort. PDSS may occur due to accidental injection and absorption of olanzapine pamoate into the bloodstream, where it can act more rapidly, as opposed to slowly distributing out from muscle tissue. Using the proper, intramuscular-injection technique for olanzapine pamoate helps to decrease the risk of PDSS, though it does not eliminate it entirely. This is why the FDA advises that people who are injected with olanzapine pamoate be watched for 3 hours after administration, in the event that PDSS occurs.
Animal Toxicology
Olanzapine has demonstrated carcinogenic effects in multiple studies when exposed chronically to female mice and rats, but not male mice and rats. The tumours found were in either the liver or mammary glands of the animals.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly, vertigo, numbness, or muscle pains may occur. Symptoms generally resolve after a short time.
Tentative evidence indicates that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely, tardive dyskinesia can occur when the medication is stopped.
Overdose
Symptoms of an overdose include tachycardia, agitation, dysarthria, decreased consciousness, and coma. Death has been reported after an acute overdose of 450 mg, but also survival after an acute overdose of 2000 mg. Fatalities generally have occurred with olanzapine plasma concentrations greater than 1000 ng/mL post mortem, with concentrations up to 5200 ng/mL recorded (though this might represent confounding by dead tissue, which may release olanzapine into the blood upon death). No specific antidote for olanzapine overdose is known, and even physicians are recommended to call a certified poison control centre for information on the treatment of such a case. Olanzapine is considered moderately toxic in overdose, more toxic than quetiapine, aripiprazole, and the SSRIs, and less toxic than the monoamine oxidase inhibitors and tricyclic antidepressants.
Interactions
Drugs or agents that increase the activity of the enzyme CYP1A2, notably tobacco smoke, may significantly increase hepatic first-pass clearance of olanzapine; conversely, drugs that inhibit CYP1A2 activity (examples: ciprofloxacin, fluvoxamine) may reduce olanzapine clearance. Carbamazepine, a known enzyme inducer, has decreased the concentration/dose ration of olanzapine by 33% compared to olanzapine alone. Another enzyme inducer, ritonavir, has also been shown to decrease the body’s exposure to olanzapine, due to its induction of the enzymes CYP1A2 and uridine 5′-diphospho-glucuronosyltransferase (UGT). Probenecid increases the total exposure (area under the curve) and maximum plasma concentration of olanzapine. Although olanzapine’s metabolism includes the minor metabolic pathway of CYP2D6, the presence of the CYP2D6 inhibitor fluoxetine does not have a clinically significant effect on olanzapine’s clearance.
Pharmacology
Pharmacodynamics
Olanzapine has a higher affinity for 5-HT2A serotonin receptors than D2 dopamine receptors, which is a common property of most atypical antipsychotics, aside from the benzamide antipsychotics such as amisulpride along with the nonbenzamides aripiprazole, brexpiprazole, blonanserin, cariprazine, melperone, and perospirone.
Olanzapine had the highest affinity of any second-generation antipsychotic towards the P-glycoprotein in one in vitro study. P-glycoprotein transports a myriad of drugs across a number of different biological membranes (found in numerous body systems) including the blood-brain barrier (a semipermeable membrane that filters the contents of blood prior to it reaching the brain); P-GP inhibition could mean that less brain exposure to olanzapine results from this interaction with the P-glycoprotein. A relatively large quantity of commonly encountered foods and medications inhibit P-GP, and pharmaceuticals fairly commonly are either substrates of P-GP, or inhibit its action; both substrates and inhibitors of P-GP effectively increase the permeability of the blood-brain barrier to P-GP substrates and subsequently increase the central activity of the substrate, while reducing the local effects on the GI tract. The mediation of olanzapine in the central nervous system by P-GP means that any other substance or drug that interacts with P-GP increases the risk for toxic accumulations of both olanzapine and the other drug.
Olanzapine is a potent antagonist of the muscarinic M3 receptor, which may underlie its diabetogenic side effects. Additionally, it also exhibits a relatively low affinity for serotonin 5-HT1, GABAA, beta-adrenergic receptors, and benzodiazepine binding sites.
The mode of action of olanzapine’s antipsychotic activity is unknown. It may involve antagonism of dopamine and serotonin receptors. Antagonism of dopamine receptors is associated with extrapyramidal effects such as tardive dyskinesia (TD), and with therapeutic effects. Antagonism of muscarinic acetylcholine receptors is associated with anticholinergic side effects such as dry mouth and constipation; in addition, it may suppress or reduce the emergence of extrapyramidal effects for the duration of treatment, but it offers no protection against the development of TD. In common with other second-generation (atypical) antipsychotics, olanzapine poses a relatively low risk of extrapyramidal side effects including TD, due to its higher affinity for the 5HT2A receptor over the D2 receptor.
Antagonizing H1 histamine receptors causes sedation and may cause weight gain, although antagonistic actions at serotonin 5-HT2C and dopamine D2 receptors have also been associated with weight gain and appetite stimulation.
Pharmacokinetics
Metabolism
Olanzapine is metabolized by the cytochrome P450 (CYP) system; principally by isozyme 1A2 (CYP1A2) and to a lesser extent by CYP2D6. By these mechanisms, more than 40% of the oral dose, on average, is removed by the hepatic first-pass effect. Clearance of olanzapine appears to vary by sex; women have roughly 25% lower clearance than men. Clearance of olanzapine also varies by race; in self-identified African Americans or Blacks, olanzapine’s clearance was 26% higher. A difference in the clearance does not apparent between individuals identifying as Caucasian, Chinese, or Japanese. Routine, pharmacokinetic monitoring of olanzapine plasma levels is generally unwarranted, though unusual circumstances (e.g. the presence of drug-drug interactions) or a desire to determine if patients are taking their medicine may prompt its use.
Chemistry
Olanzapine is unusual in having four well-characterised crystalline polymorphs and many hydrated forms.
Society and Culture
Regulatory Status
Olanzapine is approved by the US FDA for:
Treatment – in combination with fluoxetine – of depressive episodes associated with bipolar disorder (December 2003).
Long-term treatment of bipolar I disorder (January 2004).
Long-term treatment – in combination with fluoxetine – of resistant depression (March 2009).
Oral formulation: acute and maintenance treatment of schizophrenia in adults, acute treatment of manic or mixed episodes associated with bipolar I disorder (monotherapy and in combination with lithium or sodium valproate).
Intramuscular formulation: acute agitation associated with schizophrenia and bipolar I mania in adults.
Oral formulation combined with fluoxetine: treatment of acute depressive episodes associated with bipolar I disorder in adults, or treatment of acute, resistant depression in adults.
Treatment of the manifestations of psychotic disorders (September 1996 to March 2000).
Short-term treatment of acute manic episodes associated with bipolar I disorder (March 2000).
Short-term treatment of schizophrenia instead of the management of the manifestations of psychotic disorders (March 2000).
Maintaining treatment response in schizophrenic patients who had been stable for about eight weeks and were then followed for a period of up to eight months (November 2000).
The drug became generic in 2011.
Sales of Zyprexa in 2008 were $2.2 billion in the US and $4.7 billion worldwide.
Controversy and Litigation
Eli Lilly has faced many lawsuits from people who claimed they developed diabetes or other diseases after taking Zyprexa, as well as by various governmental entities, insurance companies, and others. Lilly produced a large number of documents as part of the discovery phase of this litigation, which started in 2004; the documents were ruled to be confidential by a judge and placed under seal, and later themselves became the subject of litigation.
In 2006, Lilly paid $700 million to settle around 8,000 of these lawsuits, and in early 2007, Lilly settled around 18,000 suits for $500 million, which brought the total Lilly had paid to settle suits related to the drug to $1.2 billion.
A December 2006 New York Times article based on leaked company documents concluded that the company had engaged in a deliberate effort to downplay olanzapine’s side effects. The company denied these allegations and stated that the article had been based on cherry-picked documents. The documents were provided to the Times by Jim Gottstein, a lawyer who represented mentally ill patients, who obtained them from a doctor, David Egilman, who was serving as an expert consultant on the case. After the documents were leaked to online peer-to-peer, file-sharing networks by Will Hall and others in the psychiatric survivors movement, who obtained copies, in 2007 Lilly filed a protection order to stop the dissemination of some of the documents, which Judge Jack B. Weinstein of the Brooklyn Federal District Court granted. Judge Weinstein also criticized the New York Times reporter, Gottstein, and Egilman in the ruling. The Times of London also received the documents and reported that as early as 1998, Lilly considered the risk of drug-induced obesity to be a “top threat” to Zyprexa sales. On 09 October 2000, senior Lilly research physician Robert Baker noted that an academic advisory board to which he belonged was “quite impressed by the magnitude of weight gain on olanzapine and implications for glucose.”
Lilly had threatened Egilman with criminal contempt charges regarding the documents he took and provided to reporters; in September 2007, he agreed to pay Lilly $100,000 in return for the company’s agreement to drop the threat of charges.
In September 2008, Judge Weinstein issued an order to make public Lilly’s internal documents about the drug in a different suit brought by insurance companies, pension funds, and other payors.
In March 2008, Lilly settled a suit with the state of Alaska, and in October 2008, Lilly agreed to pay $62 million to 32 states and the District of Columbia to settle suits brought under state consumer protection laws.
In 2009, Eli Lilly pleaded guilty to a US federal criminal misdemeanour charge of illegally marketing Zyprexa for off-label use and agreed to pay $1.4 billion. The settlement announcement stated “Eli Lilly admits that between September 1999 and 31 March 2001, the company promoted Zyprexa in elderly populations as treatment for dementia, including Alzheimer’s dementia. Eli Lilly has agreed to pay a $515 million criminal fine and to forfeit an additional $100 million in assets.”
Trade Names
Olanzapine is generic and available under many trade names worldwide.
Dosage Forms
Olanzapine is marketed in a number of countries, with tablets ranging from 2.5 to 20 mg. Zyprexa (and generic olanzapine) is available as an orally disintegrating “wafer”, which rapidly dissolves in saliva. It is also available in 10-mg vials for intramuscular injection.
Research
Olanzapine has been studied as an antiemetic, particularly for the control of chemotherapy-induced nausea and vomiting (CINV).
In general, olanzapine appears to be about as effective as aprepitant for the prevention of CINV, though some concerns remain for its use in this population. For example, concomitant use of metoclopramide or haloperidol increases the risk for extrapyramidal symptoms. Otherwise, olanzapine appears to be fairly well tolerated for this indication, with somnolence being the most common side effect.
Olanzapine has been considered as part of an early psychosis approach for schizophrenia. The Prevention through Risk Identification, Management, and Education study, funded by the National Institute of Mental Health and Eli Lilly, tested the hypothesis that olanzapine might prevent the onset of psychosis in people at very high risk for schizophrenia. The study examined 60 patients with prodromal schizophrenia, who were at an estimated risk of 36-54% of developing schizophrenia within a year, and treated half with olanzapine and half with placebo. In this study, patients receiving olanzapine did not have a significantly lower risk of progressing to psychosis. Olanzapine was effective for treating the prodromal symptoms, but was associated with significant weight gain.
Loxapine, sold under the brand names Loxitane and Adasuve (inhalation only) among others, is a typical antipsychotic medication used primarily in the treatment of schizophrenia.
The drug is a member of the dibenzoxazepine class and structurally related to clozapine. Several researchers have argued that loxapine may behave as an atypical antipsychotic.
The US Food and Drug Administration (FDA) has approved loxapine inhalation powder for the acute treatment of agitation associated with schizophrenia or bipolar I disorder in adults.
A brief review of loxapine found no conclusive evidence that it was particularly effective in patients with paranoid schizophrenia. A subsequent systematic review considered that the limited evidence did not indicate a clear difference in its effects from other antipsychotics.
Available Forms
Loxapine can be taken by mouth as a capsule or a liquid oral concentrate. It is also available as an intramuscular injection and as a powder for inhalation.
Side Effects
Loxapine can cause side effects that are generally similar to that of other medications in the typical antipsychotic class of medications. These include, e.g. gastrointestinal problems (like constipation and abdominal pain), cardiovascular problems (like tachycardia), moderate likelihood of drowsiness (relative to other antipsychotics), and movement problems (i.e. extrapyramidal symptoms (EPS)). At lower dosages its propensity for causing EPS appears to be similar to that of atypical antipsychotics. Although it is structurally similar to clozapine, it does not have the same risk of agranulocytosis (which, even with clozapine, is less than 1%); however, mild and temporary fluctuations in blood leukocyte levels can occur. Abuse of loxapine has been reported.
The inhaled formulation of loxapine carries a low risk for a type of airway adverse reaction called bronchospasm that is not thought to occur when loxapine is taken by mouth.
Pharmacology
Mechanism of Action
Loxapine is a “mid-potency” typical antipsychotic. However, unlike most other typical antipsychotics, it has significant potency at the 5HT2A receptor (6.6 nM), which is similar to atypical antipsychotics like clozapine (5.35 nM). The higher likelihood of EPS with loxapine, compared to clozapine, may be due to its high potency for the D2 receptor.
Pharmacokinetics
Loxapine is metabolised to amoxapine, as well as its 8-hydroxy metabolite (8-hydroxyloxapine). Amoxapine is further metabolized to its 8-hydroxy metabolite (8-hydroxyamoxapine), which is also found in the blood of people taking loxapine. At steady-state after taking loxapine by mouth, the relative amounts of loxapine and its metabolites in the blood is as follows: 8-hydroxyloxapine > 8-hydroxyamoxapine > loxapine.
The pharmacokinetics of loxapine change depending on how it is given. Intramuscular injections of loxapine lead to higher blood levels and area under the curve of loxapine than when it is taken by mouth.
Chemistry
Loxapine is a dibenzoxazepine and is structurally related to clozapine.
Quetiapine, sold under the brand name Seroquel among others, is an atypical antipsychotic medication used for the treatment of schizophrenia, bipolar disorder, and major depressive disorder. Despite being widely used as a sleep aid due its sedating effect, the benefits of such use do not appear to generally outweigh the side effects. It is taken by mouth.
Common side effects include sleepiness, constipation, weight gain, and dry mouth. Other side effects include low blood pressure with standing, seizures, a prolonged erection, high blood sugar, tardive dyskinesia, and neuroleptic malignant syndrome. In older people with dementia, its use increases the risk of death. Use in the third trimester of pregnancy may result in a movement disorder in the baby for some time after birth. Quetiapine is believed to work by blocking a number of receptors including serotonin and dopamine.
Quetiapine was developed in 1985 and approved for medical use in the United States in 1997. It is available as a generic medication. In 2018, it was the 59th most commonly prescribed medication in the United States, with more than 12 million prescriptions.
Brief History
AstraZeneca submitted a new drug application for a sustained-release version of quetiapine in the United States, Canada, and the European Union in the second half of 2006 for treatment of schizophrenia. AstraZeneca was to retain the exclusive right to market sustained-release quetiapine until 2017. The sustained-release quetiapine is marketed mainly as Seroquel XR. Other marketing names are Seroquel Prolong, Seroquel Depot and Seroquel XL
On 18 May 2007, AstraZeneca announced that the US Food and Drug Administration (FDA) had approved Seroquel XR for acute treatment of schizophrenia. During its 2007 Q2 earnings conference, AstraZeneca announced plans to launch Seroquel XR in the US during August 2007. However, Seroquel XR has become available in US pharmacies only after the FDA had approved Seroquel XR for use as maintenance treatment for schizophrenia, in addition to acute treatment of the illness, on 16 November 2007. The company has not provided a reason for the delay of Seroquel XR’s launch.
Health Canada approved sale of Seroquel XR on 27 September 2007.
In early October 2008, the FDA approved Seroquel XR for the treatment of bipolar depression and bipolar mania. According to AstraZeneca, Seroquel XR is “the first medication approved by the FDA for the once-daily acute treatment of both depressive and manic episodes associated with bipolar.”
On 31 July, 2008, Handa Pharmaceuticals, based in Fremont, California, announced that its abbreviated new drug application (“ANDA”) for quetiapine fumarate extended-release tablets, the generic version of AstraZeneca’s SEROQUEL XR, has been accepted by the FDA.
On 01 December 2008, Biovail announced that the FDA had accepted the company’s ANDA to market its own version of sustained-release quetiapine. Biovail’s sustained-release tablets will compete with AstraZeneca’s Seroquel XR.
On 24 December 2008, AstraZeneca notified shareholders that the FDA had asked for additional information on the company’s application to expand the use of sustained-release quetiapine for treatment of depression.
Medical Uses
Quetiapine is primarily used to treat schizophrenia or bipolar disorder. Quetiapine targets both positive and negative symptoms of schizophrenia.
Schizophrenia
In a 2013 comparison of 15 antipsychotics in effectiveness in treating schizophrenia, quetiapine demonstrated standard effectiveness. It was 13-16% more effective than ziprasidone, chlorpromazine, and asenapine and approximately as effective as haloperidol and aripiprazole.
There is tentative evidence of the benefit of quetiapine versus placebo in schizophrenia; however, definitive conclusions are not possible due to the high rate of attrition in trials (greater than 50%) and the lack of data on economic outcomes, social functioning, or quality of life.
It is debatable whether, as a class, typical or atypical antipsychotics are more effective. Both have equal drop-out and symptom relapse rates when typicals are used at low to moderate dosages. While quetiapine has lower rates of extrapyramidal side effects, there is greater sleepiness and rates of dry mouth.
A Cochrane review comparing quetiapine to other atypical antipsychotic agents tentatively concluded that it may be less efficacious than olanzapine and risperidone; produce fewer movement related side effects than paliperidone, aripiprazole, ziprasidone, risperidone and olanzapine; and produce weight gain similar to risperidone, clozapine and aripiprazole. They concluded that it produces suicide attempt, suicide; death; QTc prolongation, low blood pressure; tachycardia; sedation; gynaecomastia; galactorrhoea, menstrual irregularity and white blood cell count at a rate similar to first generation antipsychotics.
Bipolar Disorder
In those with bipolar disorder, quetiapine is used to treat depressive episodes; acute manic episodes associated with bipolar I disorder (as either monotherapy or adjunct therapy to lithium; valproate or lamotrigine); acute mixed episodes; and maintenance treatment of bipolar I disorder (as adjunct therapy to lithium or divalproex).
Major Depressive Disorder
Quetiapine is effective when used by itself and when used along with other medications in major depressive disorder (MDD). However, sedation is often an undesirable side effect.
In the United States, the United Kingdom and Australia (while not subsidised by the Australian Pharmaceutical Benefits Scheme for treatment of MDD), quetiapine is licensed for use as an add-on treatment in MDD.
Alzheimer’s Disease
Quetiapine does not decrease agitation among people with Alzheimer’s. Quetiapine worsens intellectual functioning in the elderly with dementia and therefore is not recommended.
Others
The use of low doses of quetiapine for insomnia, while common, is not recommended; there is little evidence of benefit and concerns regarding adverse effects.
It is sometimes used off-label, often as an augmentation agent, to treat conditions such as Tourette syndrome, musical hallucinations and anxiety disorders.
Quetiapine and clozapine are the most widely used medications for the treatment of Parkinson’s disease psychosis due to their very low extrapyramidal side-effect liability. Owing to the risks associated with clozapine (e.g. agranulocytosis, diabetes mellitus, etc.), clinicians often attempt treatment with quetiapine first, although the evidence to support quetiapine’s use for this indication is significantly weaker than that of clozapine.
Adverse Effects
Very common (>10% incidence) adverse effects:
Dry mouth.
Dizziness.
Headache.
Somnolence:
Drowsiness; of 15 antipsychotics quetiapine causes the 5th most sedation.
Extended release (XR) formulations tend to produce less sedation, dose-by-dose than the immediate release formulations.
Common (1–10% incidence) adverse effects:
High blood pressure.
Orthostatic hypotension.
High pulse rate.
High blood cholesterol.
Elevated serum triglycerides.
Abdominal pain.
Constipation.
Increased appetite.
Vomiting.
Increased liver enzymes.
Backache.
Asthenia.
Insomnia.
Lethargy.
Tremor.
Agitation.
Nasal congestion.
Pharyngitis.
Fatigue.
Pain.
Dyspepsia (Indigestion).
Peripheral oedema.
Dysphagia.
Extrapyramidal disease:
Quetiapine and clozapine are noted for their relative lack of extrapyramidal side effects.
Weight gain:
SMD 0.43 kg when compared to placebo. Produces roughly as much weight gain as risperidone, less weight gain than clozapine, olanzapine and zotepine and more weight gain than ziprasidone, lurasidone, aripiprazole and asenapine.
As with many other atypical antipsychotics, this action is likely due to its actions at the H1 histamine receptor and 5-HT2C receptor.
Rare (<1% incidence) adverse effects:
Prolonged QT interval.
Sudden cardiac death.
Syncope.
Diabetic ketoacidosis.
Restless legs syndrome.
Hyponatraemia, low blood sodium.
Jaundice, yellowing of the eyes, skin and mucous membranes due to an impaired ability of the body to clear bilirubin, a by product of haem breakdown.
Pancreatitis, pancreas swelling.
Agranulocytosis, a potentially fatal drop in white blood cell count.
Leukopenia, a drop in white blood cell count, not as severe as agranulocytosis.
Neutropenia, a drop in neutrophils, the cell of the immune cells that defends the body against bacterial infections.
Eosinophilia.
Anaphylaxis, a potentially fatal allergic reaction.
Seizure.
Hypothyroidism, underactive thyroid gland.
Myocarditis, swelling of the myocardium.
Cardiomyopathy.
Hepatitis, swelling of the liver.
Suicidal ideation.
Priapism:
A prolonged and painful erection.
Stevens-Johnson syndrome:
A potentially fatal skin reaction.
Neuroleptic malignant syndrome:
A rare and potentially fatal complication of antipsychotic drug treatment.
It is characterised by the following symptoms: tremor, rigidity, hyperthermia, tachycardia, mental status changes (e.g. confusion), etc.
Tardive Dyskinesia:
A rare and often irreversible neurological condition characterised by involuntary movements of the face, tongue, lips and rest of the body.
Most commonly occurs after prolonged treatment with antipsychotics.
It is believed to be particularly uncommon with atypical antipsychotics, especially quetiapine and clozapine
Both typical and atypical antipsychotics can cause tardive dyskinesia. According to one study, rates are lower with the atypicals at 3.9% as opposed to the typicals at 5.5%. Although quetiapine and clozapine are atypical antipsychotics, switching to these atypicals is an option to minimise symptoms of tardive dyskinesia caused by other atypicals.
Weight gain can be a problem for some, with quetiapine causing more weight gain than fluphenazine, haloperidol, loxapine, molindone, olanzapine, pimozide, risperidone, thioridazine, thiothixene, trifluoperazine, and ziprasidone, but less than chlorpromazine, clozapine, perphenazine, and sertindole.
As with some other anti-psychotics, quetiapine may lower the seizure threshold, and should be taken with caution in combination with drugs such as bupropion.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.
There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.
Pregnancy and Lactation
Placental exposure is least for quetiapine compared to other atypical antipsychotics. The evidence is insufficient to rule out any risk to the foetus but available data suggests it is unlikely to result in any major foetal malformations. It is secreted in breast milk and hence quetiapine-treated mothers are advised not to breastfeed.
Abuse Potential
In contrast to most other antipsychotic drugs, which tend to be somewhat aversive and often show problems with patient compliance with prescribed medication regimes, quetiapine is sometimes associated with drug misuse and abuse potential, for its hypnotic and sedative effects. It has a limited potential for misuse, usually only in individuals with a history of polysubstance abuse and/or mental illness, and especially in those incarcerated in prisons or secure psychiatric facilities where access to alternative intoxicants is more limited. To a significantly greater extent than other atypical antipsychotic drugs, quetiapine was found to be associated with drug-seeking behaviours, and to have standardised street prices and slang terms associated with it, either by itself or in combination with other drugs (such as “Q-ball” for the intravenous injection of quetiapine mixed with cocaine). The pharmacological basis for this distinction from other second generation antipsychotic drugs is unclear, though it has been suggested that quetiapine’s comparatively lower dopamine receptor affinity and strong antihistamine activity might mean it could be regarded as more similar to sedating antihistamines in this context. While these issues have not been regarded as sufficient cause for placing quetiapine under increased legal controls, prescribers have been urged to show caution when prescribing quetiapine to individuals with characteristics that might place them at increased risk for drug misuse.
Overdose
Most instances of acute overdosage result in only sedation, hypotension and tachycardia, but cardiac arrhythmia, coma and death have occurred in adults. Serum or plasma quetiapine concentrations are usually in the 1-10 mg/L range in overdose survivors, while postmortem blood levels of 10-25 mg/L are generally observed in fatal cases. Non-toxic levels in postmortem blood extend to around 0.8 mg/kg, but toxic levels in postmortem blood can begin at 0.35 mg/kg.
Pharmacology
Pharmacodynamics
Quetiapine has the following pharmacological actions:
Dopamine D1, D2, D3, D4, and D5 receptor antagonist.
Serotonin 5-HT1A receptor partial agonist, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptor antagonist, and 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptor ligand.
α1- and α2-adrenergic receptor antagonist.
Histamine H1 receptor antagonist.
Muscarinic acetylcholine receptor antagonist.
This means quetiapine is a dopamine, serotonin, and adrenergic antagonist, and a potent antihistamine with some anticholinergic properties. Quetiapine binds strongly to serotonin receptors; the drug acts as partial agonist at 5-HT1A receptors. Serial PET scans evaluating the D2 receptor occupancy of quetiapine have demonstrated that quetiapine very rapidly disassociates from the D2 receptor. Theoretically, this allows for normal physiological surges of dopamine to elicit normal effects in areas such as the nigrostriatal and tuberoinfundibular pathways, thus minimising the risk of side-effects such as pseudo-parkinsonism as well as elevations in prolactin. Some of the antagonised receptors (serotonin, norepinephrine) are actually autoreceptors whose blockade tends to increase the release of neurotransmitters.
At very low doses, quetiapine acts primarily as a histamine receptor blocker (antihistamine) and α1-adrenergic blocker. When the dose is increased, quetiapine activates the adrenergic system and binds strongly to serotonin receptors and autoreceptors. At high doses, quetiapine starts blocking significant amounts of dopamine receptors. Off-label prescriptions, e.g. for chronic insomnia, of low-dose quetiapine is not recommended due to the harmful side-effects.
When treating schizophrenia, antagonism of D2 receptor by quetiapine in the mesolimbic pathway relieves positive symptoms and antagonism of the 5HT2A receptor in the frontal cortex of the brain relieves negative symptoms. Quetiapine has fewer extrapyramidal side effects and is less likely to cause hyperprolactinemia when compared to other drugs used to treat schizophrenia, so is used as a first line treatment.
Pharmacokinetics
Peak levels of quetiapine occur 1.5 hours after a dose. The plasma protein binding of quetiapine is 83%. The major active metabolite of quetiapine is norquetiapine (N-desalkylquetiapine). Quetiapine has an elimination half-life of 6 or 7 hours. Its metabolite, norquetiapine, has a half-life of 9 to 12 hours. Quetiapine is excreted primarily via the kidneys (73%) and in faeces (20%) after hepatic metabolism, the remainder (1%) is excreted as the drug in its unmetabolised form.
Chemistry
Quetiapine is a tetracyclic compound and is closely related structurally to clozapine, olanzapine, loxapine, and other tetracyclic antipsychotics.
Synthesis
The synthesis of quetiapine begins with a dibenzothiazepinone. The lactam is first treated with phosphoryl chloride to produce a dibenzothiazepine. A nucleophilic substitution is used to introduce the sidechain.
Society and Culture
Regulatory Status
In the United States, the FDA has approved quetiapine for the treatment of schizophrenia and of acute manic episodes associated with bipolar disorder (bipolar mania) and for treatment of bipolar depression. In 2009, quetiapine XR was approved as adjunctive treatment of major depressive disorder.
Quetiapine received its initial indication from the FDA for treatment of schizophrenia in 1997. In 2004, it received its second indication for the treatment of mania-associated bipolar disorder. In 2007 and 2008, studies were conducted on quetiapine’s efficacy in treating generalized anxiety disorder and major depression.
Patent protection for the product ended in 2012; however, in a number of regions, the long-acting version remained under patent until 2017.
Lawsuits
In April 2010, the US Department of Justice fined Astra-Zeneca $520 million for the company’s aggressive marketing of Seroquel for off-label uses. According to the Department of Justice, “the company recruited doctors to serve as authors of articles that were ghostwritten by medical literature companies and about studies the doctors in question did not conduct. AstraZeneca then used those studies and articles as the basis for promotional messages about unapproved uses of Seroquel.”
Multiple lawsuits have been filed in relation to quetiapine’s side-effects, in particular, diabetes.
Approximately 10,000 lawsuits have been filed against AstraZeneca, alleging that quetiapine caused problems ranging from slurred speech and chronic insomnia to deaths.
Controversy
In 2004, a young man named Dan Markingson committed suicide in a controversial Seroquel clinical trial at the University of Minnesota while under an involuntary commitment order. A group of University of Minnesota bioethicists charged that the trial involved an alarming number of ethical violations.
Nurofen Plus Tampering Case
In August 2011, the UK’s Medicines and Healthcare products Regulatory Agency (MHRA) issued a class-4 drug alert following reports that some batches of Nurofen plus contained Seroquel XL tablets instead.
Following the issue of the Class-4 Drug Alert, Reckitt Benckiser (UK) Ltd received further reports of rogue blister strips in cartons of two additional batches of Nurofen Plus tablets. One of the new batches contained Seroquel XL 50 mg tablets and one contained the Pfizer product Neurontin 100 mg capsules.
Following discussions with the MHRA’s Defective Medicines Report Centre (DMRC), Reckitt Benckiser (UK) Ltd decided to recall all remaining unexpired stock of Nurofen Plus tablets in any pack size, leading to a Class-1 Drug Alert. The contamination was later traced to in-store tampering by a customer.
It may be used by mouth and by injection into a muscle (IM). The IM form may be used for acute agitation in people with schizophrenia.
Common side effects include dizziness, drowsiness, dry mouth, and twitches. Although it can also cause weight gain, the risk is much lower than for other atypical antipsychotics. How it works is not entirely clear but is believed to involve effects on serotonin and dopamine in the brain.
Ziprasidone was approved for medical use in the United States in 2001. The pills are made up of the hydrochloride salt, ziprasidone hydrochloride. The intramuscular form is the mesylate, ziprasidone mesylate trihydrate, and is provided as a lyophilised powder. In 2017, it was the 261st most commonly prescribed medication in the United States, with more than one million prescriptions.
Brief History
Ziprasidone is chemically similar to risperidone, of which it is a structural analogue. It was first synthesized in 1987 at the Pfizer central research campus in Groton, Connecticut.
Phase I trials started in 1995. In 1998 ziprasidone was approved in Sweden. After the FDA raised concerns about long QT syndrome, more clinical trials were conducted and submitted to the FDA, which approved the drug on 05 February 2001.
Medical Uses
Ziprasidone is approved by the US Food and Drug Administration (FDA) for the treatment of schizophrenia as well as acute mania and mixed states associated with bipolar disorder. Its intramuscular injection form is approved for acute agitation in schizophrenic patients for whom treatment with just ziprasidone is appropriate.
In a 2013 study in a comparison of 15 antipsychotic drugs in effectiveness in treating schizophrenic symptoms, ziprasidone demonstrated mild-standard effectiveness. 15% more effective than lurasidone and iloperidone, approximately as effective as chlorpromazine and asenapine, and 9-13% less effective than haloperidol, quetiapine, and aripiprazole. Ziprasidone is effective in the treatment of schizophrenia, though evidence from the CATIE trials suggests it is less effective than olanzapine, and equally as effective compared to quetiapine. There are higher discontinuation rates for lower doses of ziprasidone, which are also less effective than higher doses.
Adverse Effects
Ziprasidone (and all other second generation antipsychotics (SGAs)) received a black box warning due to increased mortality in elderly patients with dementia-related psychosis.
Sleepiness and headache are very common adverse effects (>10%).
Common adverse effects (1-10%), include producing too much saliva or having dry mouth, runny nose, respiratory disorders or coughing, nausea and vomiting, stomach aches, constipation or diarrhoea, loss of appetite, weight gain (but the smallest risk for weight gain compared to other antipsychotics), rashes, fast heart beats, blood pressure falling when standing up quickly, muscle pain, weakness, twitches, dizziness, and anxiety. Extrapyramidal symptoms are also common and include tremor, dystonia (sustained or repetitive muscle contractions), akathisia (the feeling of a need to be in motion), parkinsonism, and muscle rigidity; in a 2013 meta-analysis of 15 antipsychotic drugs, ziprasidone ranked 8th for such side effects.
Ziprasidone is known to cause activation into mania in some bipolar patients.
This medication can cause birth defects, according to animal studies, although this side effect has not been confirmed in humans.
Recently, the FDA required the manufacturers of some atypical antipsychotics to include a warning about the risk of hyperglycaemia and Type II diabetes with atypical antipsychotics. Some evidence suggests that ziprasidone does not cause insulin resistance to the degree of other atypical antipsychotics, such as olanzapine. Weight gain is also less of a concern with ziprasidone compared to other atypical antipsychotics. In fact, in a trial of long term therapy with ziprasidone, overweight patients (BMI > 27) actually had a mean weight loss overall. According to the manufacturer insert, ziprasidone caused an average weight gain of 2.2 kg (4.8 lbs), which is significantly lower than other atypical antipsychotics, making this medication better for patients that are concerned about their weight. In December 2014, the FDA warned that ziprasidone could cause a potentially fatal skin reaction, Drug Reaction with Eosinophilia and Systemic Symptoms, although this was believed to occur only rarely.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.
There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.
Pharmacology
Pharmacodynamics
Correspondence to Clinical Effects
Ziprasidone mostly affects the receptors of dopamine (D2), serotonin (5-HT2A, partially 5-HT1A, 5-HT2C, and 5-HT1D) and epinephrine/norepinephrine (α1) to a high degree, while of histamine (H1) – moderately. It also somewhat inhibits reuptake of serotonin and norepinephrine, though not dopamine.
Ziprasidone’s efficacy in treating the positive symptoms of schizophrenia is believed to be mediated primarily via antagonism of the dopamine receptors, specifically D2. Blockade of the 5-HT2A receptor may also play a role in its effectiveness against positive symptoms, though the significance of this property in antipsychotic drugs is still debated among researchers. Blockade of 5-HT2A and 5-HT2C and activation of 5-HT1A as well as inhibition of the reuptake of serotonin and norepinephrine may all contribute to its ability to alleviate negative symptoms. The relatively weak antagonistic actions of ziprasidone on the α1-adrenergic receptor likely in part explains some of its side effects, such as orthostatic hypotension. Unlike many other antipsychotics, ziprasidone has no significant affinity for the mACh receptors, and as such lacks any anticholinergic side effects. Like most other antipsychotics, ziprasidone is sedating due primarily to serotonin and dopamine blockade.
Pharmacokinetics
The systemic bioavailability of ziprasidone is 100% when administered intramuscularly and 60% when administered orally without food.
After a single dose intramuscular administration, the peak serum concentration typically occurs at about 60 minutes after the dose is administered, or earlier. Steady state plasma concentrations are achieved within one to three days. Exposure increases in a dose-related manner and following three days of intramuscular dosing, little accumulation is observed.
The bioavailability of the drug is reduced by approximately 50% if a meal is not eaten before Ziprasidone ingestion.
Ziprasidone is hepatically metabolized by aldehyde oxidase; minor metabolism occurs via cytochrome P450 3A4 (CYP3A4). Medications that induce (e.g. carbamazepine) or inhibit (e.g. ketoconazole) CYP3A4 have been shown to decrease and increase, respectively, blood levels of ziprasidone.
Its biological half-life time is 10 hours at doses of 80-120 milligrams.
Society and Culture
Lawsuit
In September 2009, the US Justice Department announced that Pfizer had been ordered to pay a historic fine of $2.3 billion as a penalty for fraudulent marketing of several drugs, including Geodon. Pfizer had illegally promoted Geodon and submitted false claims to government health care programs for uses that were not medically accepted indications. The civil settlement also resolves allegations that Pfizer paid kickbacks to health care providers to induce them to prescribe Geodon, as well as other drugs. This was the largest civil fraud settlement in history against a pharmaceutical company.
You must be logged in to post a comment.