What is Haloperidol?

Introduction

Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication.

Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations in alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks in people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.

Haloperidol may result in a movement disorder known as tardive dyskinesia which may be permanent. Neuroleptic malignant syndrome and QT interval prolongation may occur. In older people with psychosis due to dementia it results in an increased risk of death. When taken during pregnancy it may result in problems in the infant. It should not be used in people with Parkinson’s disease.

Haloperidol was discovered in 1958 by Paul Janssen. It was made from pethidine (meperidine). It is on the World Health Organisation’s (WHO’s) List of Essential Medicines. It is the most commonly used typical antipsychotic. In 2017, it was the 296th most commonly prescribed medication in the United States, with more than one million prescriptions.

Brief History

Haloperidol was discovered by Paul Janssen. It was developed in 1958 at the Belgian company Janssen Pharmaceutica and submitted to the first of clinical trials in Belgium later that year.

Haloperidol was approved by the US Food and Drug Administration (FDA) on 12 April 1967; it was later marketed in the US and other countries under the brand name Haldol by McNeil Laboratories.

Medical Uses

Haloperidol is used in the control of the symptoms of:

  • Acute psychosis, such as drug-induced psychosis caused by LSD, psilocybin, amphetamines, ketamine, and phencyclidine, and psychosis associated with high fever or metabolic disease.
    • Some evidence, however, has found haloperidol to worsen psychosis due to psilocybin.
  • Adjunctive treatment of alcohol and opioid withdrawal.
  • Agitation and confusion associated with cerebral sclerosis.
  • Alcohol-induced psychosis.
  • Hallucinations in alcohol withdrawal.
  • Hyperactive delirium (to control the agitation component of delirium).
  • Hyperactivity, aggression.
  • Otherwise uncontrollable, severe behavioral disorders in children and adolescents.
  • Schizophrenia.
  • Therapeutic trial in personality disorders, such as borderline personality disorder.
  • Treatment of intractable hiccups.
  • Treatment of neurological disorders, such as tic disorders such as Tourette syndrome, and chorea.
  • Treatment of severe nausea and emesis in postoperative and palliative care, especially for palliating adverse effects of radiation therapy and chemotherapy in oncology.

Haloperidol was considered indispensable for treating psychiatric emergency situations, although the newer atypical drugs have gained a greater role in a number of situations as outlined in a series of consensus reviews published between 2001 and 2005.

In a 2013 comparison of 15 antipsychotics in schizophrenia, haloperidol demonstrated standard effectiveness. It was 13-16% more effective than ziprasidone, chlorpromazine, and asenapine, approximately as effective as quetiapine and aripiprazole, and 10% less effective than paliperidone.

Pregnancy and Lactation

Data from animal experiments indicate haloperidol is not teratogenic, but is embryotoxic in high doses. In humans, no controlled studies exist. Reports in pregnant women revealed possible damage to the foetus, although most of the women were exposed to multiple drugs during pregnancy. In addition, reports indicate neonates exposed to antipsychotic drugs are at risk for extrapyramidal and/or withdrawal symptoms following delivery, such as agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, and feeding disorder. Following accepted general principles, haloperidol should be given during pregnancy only if the benefit to the mother clearly outweighs the potential foetal risk.

Haloperidol is excreted in breast milk. A few studies have examined the impact of haloperidol exposure on breastfed infants and in most cases, there were no adverse effects on infant growth and development.

Other Considerations

During long-term treatment of chronic psychiatric disorders, the daily dose should be reduced to the lowest level needed for maintenance of remission. Sometimes, it may be indicated to terminate haloperidol treatment gradually. In addition, during long-term use, routine monitoring including measurement of BMI, blood pressure, fasting blood sugar, and lipids, is recommended due to the risk of side effects.

Other forms of therapy (psychotherapy, occupational therapy/ergotherapy, or social rehabilitation) should be instituted properly. PET imaging studies have suggested low doses are preferable. Clinical response was associated with at least 65% occupancy of D2 receptors, while greater than 72% was likely to cause hyperprolactinaemia and over 78% associated with extrapyramidal side effects. Doses of haloperidol greater than 5 mg increased the risk of side effects without improving efficacy. Patients responded with doses under even 2 mg in first-episode psychosis. For maintenance treatment of schizophrenia, an international consensus conference recommended a reduction dosage by about 20% every 6 months until a minimal maintenance dose is established.

Depot forms are also available; these are injected deeply intramuscularly at regular intervals. The depot forms are not suitable for initial treatment, but are suitable for patients who have demonstrated inconsistency with oral dosages.

The decanoate ester of haloperidol (haloperidol decanoate, trade names Haldol decanoate, Halomonth, Neoperidole) has a much longer duration of action, so is often used in people known to be noncompliant with oral medication. A dose is given by intramuscular injection once every two to four weeks. The IUPAC name of haloperidol decanoate is [4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]piperidin-4-yl] decanoate.

Topical formulations of haloperidol should not be used as treatment for nausea because research does not indicate this therapy is more effective than alternatives.

Adverse Effects

As haloperidol is a high-potency typical antipsychotic, it tends to produce significant extrapyramidal side effects. According to a 2013 meta-analysis of the comparative efficacy and tolerability of 15 antipsychotic drugs it was the most prone of the 15 for causing extrapyramidal side effects.

With more than 6 months of use 14 percent of users gain weight. Haloperidol may be neurotoxic.

  • Common (>1% incidence):
    • Extrapyramidal side effects including:
      • Akathisia (motor restlessness).
      • Dystonia (continuous spasms and muscle contractions).
      • Muscle rigidity.
      • Parkinsonism (characteristic symptoms such as rigidity).
    • Hypotension:
    • Anticholinergic side effects such as (These adverse effects are less common than with lower-potency typical antipsychotics, such as chlorpromazine and thioridazine):
      • Blurred vision.
      • Constipation.
      • Dry mouth.
    • Somnolence (which is not a particularly prominent side effect, as is supported by the results of the aforementioned meta-analysis).
  • Unknown frequency:
    • Anaemia.
    • Headache.
    • Increased respiratory rate.
    • Orthostatic hypotension.
    • Prolonged QT interval.
    • Visual disturbances.
  • Rare (<1% incidence):
    • Acute hepatic failure.
    • Agitation.
    • Agranulocytosis.
    • Anaphylactic reaction.
    • Anorexia.
    • Bronchospasm.
    • Cataracts.
    • Cholestasis.
    • Confusional state.
    • Depression.
    • Dermatitis exfoliative.
    • Dyspnoea.
    • Oedema.
    • Extrasystoles.
    • Face oedema.
    • Gynecomastia.
    • Hepatitis.
    • Hyperglycaemia.
    • Hypersensitivity.
    • Hyperthermia.
    • Hypoglycaemia.
    • Hyponatremia.
    • Hypothermia.
    • Increased sweating.
    • Injection site abscess.
    • Insomnia.
    • Itchiness.
    • Jaundice.
    • Laryngeal oedema.
    • Laryngospasm.
    • Leukocytoclastic vasculitis.
    • Leukopenia.
    • Liver function test abnormal.
    • Nausea.
    • Neuroleptic malignant syndrome.
    • Neutropenia.
    • Pancytopenia.
    • Photosensitivity reaction.
    • Priapism.
    • Psychotic disorder.
    • Pulmonary embolism.
    • Rash.
    • Retinopathy.
    • Seizure.
    • Sudden death.
    • Tardive dyskinesia.
    • Thrombocytopenia.
    • Torsades de pointes.
    • Urinary retention.
    • Urticaria.
    • Ventricular fibrillation.
    • Ventricular tachycardia.
    • Vomiting.

Contraindications

  • Pre-existing coma, acute stroke.
  • Severe intoxication with alcohol or other central depressant drugs.
  • Known allergy against haloperidol or other butyrophenones or other drug ingredients.
  • Known heart disease, when combined will tend towards cardiac arrest.

Special Cautions

  • A multiple-year study suggested this drug and other neuroleptic antipsychotic drugs commonly given to people with Alzheimer’s with mild behavioural problems often make their condition worse and its withdrawal was even beneficial for some cognitive and functional measures.
  • Elderly patients with dementia-related psychosis: analysis of 17 trials showed the risk of death in this group of patients was 1.6 to 1.7 times that of placebo-treated patients.
    • Most of the causes of death were either cardiovascular or infectious in nature.
    • It is not clear to what extent this observation is attributed to antipsychotic drugs rather than the characteristics of the patients.
    • The drug bears a boxed warning about this risk.
  • Impaired liver function, as haloperidol is metabolised and eliminated mainly by the liver.
  • In patients with hyperthyroidism, the action of haloperidol is intensified and side effects are more likely.
  • IV injections: risk of hypotension or orthostatic collapse.
  • Patients at special risk for the development of QT prolongation (hypokalaemia, concomitant use of other drugs causing QT prolongation).
  • Patients with a history of leukopenia: a complete blood count should be monitored frequently during the first few months of therapy and discontinuation of the drug should be considered at the first sign of a clinically significant decline in white blood cells.
  • Pre-existing Parkinson’s disease or dementia with Lewy bodies.

Interactions

  • Amiodarone: Q-Tc interval prolongation (potentially dangerous change in heart rhythm).
  • Amphetamine and methylphenidate: counteracts increased action of norepinephrine and dopamine in patients with narcolepsy or ADD/ADHD.
  • Epinephrine: action antagonised, paradoxical decrease in blood pressure may result.
  • Guanethidine: antihypertensive action antagonised.
  • Levodopa: decreased action of levodopa.
  • Lithium: rare cases of the following symptoms have been noted: encephalopathy, early and late extrapyramidal side effects, other neurologic symptoms, and coma.
  • Methyldopa: increased risk of extrapyramidal side effects and other unwanted central effects.
  • Other central depressants (alcohol, tranquilizers, narcotics): actions and side effects of these drugs (sedation, respiratory depression) are increased.
    • In particular, the doses of concomitantly used opioids for chronic pain can be reduced by 50%.
  • Other drugs metabolised by the CYP3A4 enzyme system: inducers such as carbamazepine, phenobarbital, and rifampicin decrease plasma levels and inhibitors such as quinidine, buspirone, and fluoxetine increase plasma levels.
  • Tricyclic antidepressants: metabolism and elimination of tricyclics significantly decreased, increased toxicity noted (anticholinergic and cardiovascular side effects, lowering of seizure threshold).

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.

Overdose

Symptoms

Symptoms are usually due to side effects. Most often encountered are:

  • Anticholinergic side effects (dry mouth, constipation, paralytic ileus, difficulties in urinating, decreased perspiration).
  • Coma in severe cases, accompanied by respiratory depression and massive hypotension, shock.
  • Hypotension or hypertension.
  • Rarely, serious ventricular arrhythmia (torsades de pointes), with or without prolonged QT-time.
  • Sedation.
  • Severe extrapyramidal side effects with muscle rigidity and tremors, akathisia, etc.

Treatment

Treatment is mostly symptomatic and involves intensive care with stabilisation of vital functions. In early detected cases of oral overdose, induction of emesis, gastric lavage, and the use of activated charcoal can be tried. In the case of a severe overdose, antidotes such as bromocriptine or ropinirole may be used to treat the extrapyramidal effects caused by haloperidol, acting as dopamine receptor agonists. ECG and vital signs should be monitored especially for QT prolongation and severe arrhythmias should be treated with antiarrhythmic measures.

Prognosis

In general, the prognosis of overdose is good, provided the person has survived the initial phase. An overdose of haloperidol can be fatal.

Pharmacology

Haloperidol is a typical butyrophenone type antipsychotic that exhibits high affinity dopamine D2 receptor antagonism and slow receptor dissociation kinetics. It has effects similar to the phenothiazines. The drug binds preferentially to D2 and α1 receptors at low dose (ED50 = 0.13 and 0.42 mg/kg, respectively), and 5-HT2 receptors at a higher dose (ED50 = 2.6 mg/kg). Given that antagonism of D2 receptors is more beneficial on the positive symptoms of schizophrenia and antagonism of 5-HT2 receptors on the negative symptoms, this characteristic underlies haloperidol’s greater effect on delusions, hallucinations and other manifestations of psychosis. Haloperidol’s negligible affinity for histamine H1 receptors and muscarinic M1 acetylcholine receptors yields an antipsychotic with a lower incidence of sedation, weight gain, and orthostatic hypotension though having higher rates of treatment emergent extrapyramidal symptoms.

Haloperidol acts on these receptors: (Ki)

  • D1 (silent antagonist) – Unknown efficiency.
  • D5 (silent antagonist) – Unknown efficiency.
  • D2 (inverse agonist) – 0.7 nM.
  • D3 (inverse agonist) – 0.2 nM.
  • D4 (inverse agonist) – 5–9 nM.
  • σ1 (irreversible inactivation by haloperidol metabolite HPP+) – 3 nM.
  • σ2 (agonist): 54 nM.
  • 5HT1A receptor agonist – 1927 nM.
  • 5HT2A (silent antagonist) – 53 nM.
  • 5HT2C (silent antagonist) – 10,000 nM.
  • 5HT6 (silent antagonist) – 3666 nM.
  • 5HT7 (irreversible silent antagonist) – 377.2 nM.
  • H1 (silent antagonist) – 1,800 nM.
  • M1 (silent antagonist) – 10,000 nM.
  • α1A (silent antagonist) – 12 nM.
  • α2A (silent antagonist) – 1130 nM.
  • α2B (silent antagonist) – 480 nM.
  • α2C (silent antagonist) – 550 nM.
  • NR1/NR2B subunit containing NMDA receptor (antagonist; ifenprodil site): IC50 – 2,000 nM.

Pharmacokinetics

By Mouth

The bioavailability of oral haloperidol ranges from 60-70%. However, there is a wide variance in reported mean Tmax and T1/2 in different studies, ranging from 1.7 to 6.1 hours and 14.5 to 36.7 hours respectively.

Intramuscular Injections

The drug is well and rapidly absorbed with a high bioavailability when injected intramuscularly. The Tmax is 20 minutes in healthy individuals and 33.8 minutes in patients with schizophrenia. The mean T1/2 is 20.7 hours. The decanoate injectable formulation is for intramuscular administration only and is not intended to be used intravenously. The plasma concentrations of haloperidol decanoate reach a peak at about six days after the injection, falling thereafter, with an approximate half-life of three weeks.

Intravenous Injections

The bioavailability is 100% in intravenous (IV) injection, and the very rapid onset of action is seen within seconds. The T1/2 is 14.1 to 26.2 hours. The apparent volume of distribution is between 9.5 and 21.7 L/kg. The duration of action is four to six hours.

Therapeutic Concentrations

Plasma levels of five to 15 micrograms per litre are typically seen for therapeutic response (Ulrich S, et al. Clin Pharmacokinet. 1998). The determination of plasma levels is rarely used to calculate dose adjustments but can be useful to check compliance.

The concentration of haloperidol in brain tissue is about 20-fold higher compared to blood levels. It is slowly eliminated from brain tissue, which may explain the slow disappearance of side effects when the medication is stopped.

Distribution and Metabolism

Haloperidol is heavily protein bound in human plasma, with a free fraction of only 7.5 to 11.6%. It is also extensively metabolised in the liver with only about 1% of the administered dose excreted unchanged in the urine. The greatest proportion of the hepatic clearance is by glucuronidation, followed by reduction and CYP-mediated oxidation, primarily by CYP3A4.

Society and Culture

Cost

Haloperidol is relatively inexpensive, being up to 100 fold less expensive than newer antipsychotics.

Brand Names

Haloperidol is the INN, BAN, USAN, AAN approved name.

It is sold under the tradenames Aloperidin, Bioperidolo, Brotopon, Dozic, Duraperidol (Germany), Einalon S, Eukystol, Haldol (common tradename in the US and UK), Halol, Halosten, Keselan, Linton, Peluces, Serenace and Sigaperidol.

Veterinary Use

Haloperidol is also used on many different kinds of animals for nonselective tranquilisation and diminishing behavioural arousal, in veterinary and other settings including captivity management.

What is Quetiapine?

Introduction

Quetiapine, sold under the brand name Seroquel among others, is an atypical antipsychotic medication used for the treatment of schizophrenia, bipolar disorder, and major depressive disorder. Despite being widely used as a sleep aid due its sedating effect, the benefits of such use do not appear to generally outweigh the side effects. It is taken by mouth.

Common side effects include sleepiness, constipation, weight gain, and dry mouth. Other side effects include low blood pressure with standing, seizures, a prolonged erection, high blood sugar, tardive dyskinesia, and neuroleptic malignant syndrome. In older people with dementia, its use increases the risk of death. Use in the third trimester of pregnancy may result in a movement disorder in the baby for some time after birth. Quetiapine is believed to work by blocking a number of receptors including serotonin and dopamine.

Quetiapine was developed in 1985 and approved for medical use in the United States in 1997. It is available as a generic medication. In 2018, it was the 59th most commonly prescribed medication in the United States, with more than 12 million prescriptions.

Brief History

AstraZeneca submitted a new drug application for a sustained-release version of quetiapine in the United States, Canada, and the European Union in the second half of 2006 for treatment of schizophrenia. AstraZeneca was to retain the exclusive right to market sustained-release quetiapine until 2017. The sustained-release quetiapine is marketed mainly as Seroquel XR. Other marketing names are Seroquel Prolong, Seroquel Depot and Seroquel XL

On 18 May 2007, AstraZeneca announced that the US Food and Drug Administration (FDA) had approved Seroquel XR for acute treatment of schizophrenia. During its 2007 Q2 earnings conference, AstraZeneca announced plans to launch Seroquel XR in the US during August 2007. However, Seroquel XR has become available in US pharmacies only after the FDA had approved Seroquel XR for use as maintenance treatment for schizophrenia, in addition to acute treatment of the illness, on 16 November 2007. The company has not provided a reason for the delay of Seroquel XR’s launch.

Health Canada approved sale of Seroquel XR on 27 September 2007.

In early October 2008, the FDA approved Seroquel XR for the treatment of bipolar depression and bipolar mania. According to AstraZeneca, Seroquel XR is “the first medication approved by the FDA for the once-daily acute treatment of both depressive and manic episodes associated with bipolar.”

On 31 July, 2008, Handa Pharmaceuticals, based in Fremont, California, announced that its abbreviated new drug application (“ANDA”) for quetiapine fumarate extended-release tablets, the generic version of AstraZeneca’s SEROQUEL XR, has been accepted by the FDA.

On 01 December 2008, Biovail announced that the FDA had accepted the company’s ANDA to market its own version of sustained-release quetiapine. Biovail’s sustained-release tablets will compete with AstraZeneca’s Seroquel XR.

On 24 December 2008, AstraZeneca notified shareholders that the FDA had asked for additional information on the company’s application to expand the use of sustained-release quetiapine for treatment of depression.

Medical Uses

Quetiapine is primarily used to treat schizophrenia or bipolar disorder. Quetiapine targets both positive and negative symptoms of schizophrenia.

Schizophrenia

In a 2013 comparison of 15 antipsychotics in effectiveness in treating schizophrenia, quetiapine demonstrated standard effectiveness. It was 13-16% more effective than ziprasidone, chlorpromazine, and asenapine and approximately as effective as haloperidol and aripiprazole.

There is tentative evidence of the benefit of quetiapine versus placebo in schizophrenia; however, definitive conclusions are not possible due to the high rate of attrition in trials (greater than 50%) and the lack of data on economic outcomes, social functioning, or quality of life.

It is debatable whether, as a class, typical or atypical antipsychotics are more effective. Both have equal drop-out and symptom relapse rates when typicals are used at low to moderate dosages. While quetiapine has lower rates of extrapyramidal side effects, there is greater sleepiness and rates of dry mouth.

A Cochrane review comparing quetiapine to other atypical antipsychotic agents tentatively concluded that it may be less efficacious than olanzapine and risperidone; produce fewer movement related side effects than paliperidone, aripiprazole, ziprasidone, risperidone and olanzapine; and produce weight gain similar to risperidone, clozapine and aripiprazole. They concluded that it produces suicide attempt, suicide; death; QTc prolongation, low blood pressure; tachycardia; sedation; gynaecomastia; galactorrhoea, menstrual irregularity and white blood cell count at a rate similar to first generation antipsychotics.

Bipolar Disorder

In those with bipolar disorder, quetiapine is used to treat depressive episodes; acute manic episodes associated with bipolar I disorder (as either monotherapy or adjunct therapy to lithium; valproate or lamotrigine); acute mixed episodes; and maintenance treatment of bipolar I disorder (as adjunct therapy to lithium or divalproex).

Major Depressive Disorder

Quetiapine is effective when used by itself and when used along with other medications in major depressive disorder (MDD). However, sedation is often an undesirable side effect.

In the United States, the United Kingdom and Australia (while not subsidised by the Australian Pharmaceutical Benefits Scheme for treatment of MDD), quetiapine is licensed for use as an add-on treatment in MDD.

Alzheimer’s Disease

Quetiapine does not decrease agitation among people with Alzheimer’s. Quetiapine worsens intellectual functioning in the elderly with dementia and therefore is not recommended.

Others

The use of low doses of quetiapine for insomnia, while common, is not recommended; there is little evidence of benefit and concerns regarding adverse effects.

It is sometimes used off-label, often as an augmentation agent, to treat conditions such as Tourette syndrome, musical hallucinations and anxiety disorders.

Quetiapine and clozapine are the most widely used medications for the treatment of Parkinson’s disease psychosis due to their very low extrapyramidal side-effect liability. Owing to the risks associated with clozapine (e.g. agranulocytosis, diabetes mellitus, etc.), clinicians often attempt treatment with quetiapine first, although the evidence to support quetiapine’s use for this indication is significantly weaker than that of clozapine.

Adverse Effects

  • Very common (>10% incidence) adverse effects:
    • Dry mouth.
    • Dizziness.
    • Headache.
    • Somnolence:
      • Drowsiness; of 15 antipsychotics quetiapine causes the 5th most sedation.
      • Extended release (XR) formulations tend to produce less sedation, dose-by-dose than the immediate release formulations.
  • Common (1–10% incidence) adverse effects:
    • High blood pressure.
    • Orthostatic hypotension.
    • High pulse rate.
    • High blood cholesterol.
    • Elevated serum triglycerides.
    • Abdominal pain.
    • Constipation.
    • Increased appetite.
    • Vomiting.
    • Increased liver enzymes.
    • Backache.
    • Asthenia.
    • Insomnia.
    • Lethargy.
    • Tremor.
    • Agitation.
    • Nasal congestion.
    • Pharyngitis.
    • Fatigue.
    • Pain.
    • Dyspepsia (Indigestion).
    • Peripheral oedema.
    • Dysphagia.
    • Extrapyramidal disease:
      • Quetiapine and clozapine are noted for their relative lack of extrapyramidal side effects.
    • Weight gain:
      • SMD 0.43 kg when compared to placebo. Produces roughly as much weight gain as risperidone, less weight gain than clozapine, olanzapine and zotepine and more weight gain than ziprasidone, lurasidone, aripiprazole and asenapine.
      • As with many other atypical antipsychotics, this action is likely due to its actions at the H1 histamine receptor and 5-HT2C receptor.
  • Rare (<1% incidence) adverse effects:
    • Prolonged QT interval.
    • Sudden cardiac death.
    • Syncope.
    • Diabetic ketoacidosis.
    • Restless legs syndrome.
    • Hyponatraemia, low blood sodium.
    • Jaundice, yellowing of the eyes, skin and mucous membranes due to an impaired ability of the body to clear bilirubin, a by product of haem breakdown.
    • Pancreatitis, pancreas swelling.
    • Agranulocytosis, a potentially fatal drop in white blood cell count.
    • Leukopenia, a drop in white blood cell count, not as severe as agranulocytosis.
    • Neutropenia, a drop in neutrophils, the cell of the immune cells that defends the body against bacterial infections.
    • Eosinophilia.
    • Anaphylaxis, a potentially fatal allergic reaction.
    • Seizure.
    • Hypothyroidism, underactive thyroid gland.
    • Myocarditis, swelling of the myocardium.
    • Cardiomyopathy.
    • Hepatitis, swelling of the liver.
    • Suicidal ideation.
    • Priapism:
      • A prolonged and painful erection.
    • Stevens-Johnson syndrome:
      • A potentially fatal skin reaction.
    • Neuroleptic malignant syndrome:
      • A rare and potentially fatal complication of antipsychotic drug treatment.
      • It is characterised by the following symptoms: tremor, rigidity, hyperthermia, tachycardia, mental status changes (e.g. confusion), etc.
    • Tardive Dyskinesia:
      • A rare and often irreversible neurological condition characterised by involuntary movements of the face, tongue, lips and rest of the body.
      • Most commonly occurs after prolonged treatment with antipsychotics.
      • It is believed to be particularly uncommon with atypical antipsychotics, especially quetiapine and clozapine

Both typical and atypical antipsychotics can cause tardive dyskinesia. According to one study, rates are lower with the atypicals at 3.9% as opposed to the typicals at 5.5%. Although quetiapine and clozapine are atypical antipsychotics, switching to these atypicals is an option to minimise symptoms of tardive dyskinesia caused by other atypicals.

Weight gain can be a problem for some, with quetiapine causing more weight gain than fluphenazine, haloperidol, loxapine, molindone, olanzapine, pimozide, risperidone, thioridazine, thiothixene, trifluoperazine, and ziprasidone, but less than chlorpromazine, clozapine, perphenazine, and sertindole.

As with some other anti-psychotics, quetiapine may lower the seizure threshold, and should be taken with caution in combination with drugs such as bupropion.

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.

Pregnancy and Lactation

Placental exposure is least for quetiapine compared to other atypical antipsychotics. The evidence is insufficient to rule out any risk to the foetus but available data suggests it is unlikely to result in any major foetal malformations. It is secreted in breast milk and hence quetiapine-treated mothers are advised not to breastfeed.

Abuse Potential

In contrast to most other antipsychotic drugs, which tend to be somewhat aversive and often show problems with patient compliance with prescribed medication regimes, quetiapine is sometimes associated with drug misuse and abuse potential, for its hypnotic and sedative effects. It has a limited potential for misuse, usually only in individuals with a history of polysubstance abuse and/or mental illness, and especially in those incarcerated in prisons or secure psychiatric facilities where access to alternative intoxicants is more limited. To a significantly greater extent than other atypical antipsychotic drugs, quetiapine was found to be associated with drug-seeking behaviours, and to have standardised street prices and slang terms associated with it, either by itself or in combination with other drugs (such as “Q-ball” for the intravenous injection of quetiapine mixed with cocaine). The pharmacological basis for this distinction from other second generation antipsychotic drugs is unclear, though it has been suggested that quetiapine’s comparatively lower dopamine receptor affinity and strong antihistamine activity might mean it could be regarded as more similar to sedating antihistamines in this context. While these issues have not been regarded as sufficient cause for placing quetiapine under increased legal controls, prescribers have been urged to show caution when prescribing quetiapine to individuals with characteristics that might place them at increased risk for drug misuse.

Overdose

Most instances of acute overdosage result in only sedation, hypotension and tachycardia, but cardiac arrhythmia, coma and death have occurred in adults. Serum or plasma quetiapine concentrations are usually in the 1-10 mg/L range in overdose survivors, while postmortem blood levels of 10-25 mg/L are generally observed in fatal cases. Non-toxic levels in postmortem blood extend to around 0.8 mg/kg, but toxic levels in postmortem blood can begin at 0.35 mg/kg.

Pharmacology

Pharmacodynamics

Quetiapine has the following pharmacological actions:

  • Dopamine D1, D2, D3, D4, and D5 receptor antagonist.
  • Serotonin 5-HT1A receptor partial agonist, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptor antagonist, and 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptor ligand.
  • α1- and α2-adrenergic receptor antagonist.
  • Histamine H1 receptor antagonist.
  • Muscarinic acetylcholine receptor antagonist.

This means quetiapine is a dopamine, serotonin, and adrenergic antagonist, and a potent antihistamine with some anticholinergic properties. Quetiapine binds strongly to serotonin receptors; the drug acts as partial agonist at 5-HT1A receptors. Serial PET scans evaluating the D2 receptor occupancy of quetiapine have demonstrated that quetiapine very rapidly disassociates from the D2 receptor. Theoretically, this allows for normal physiological surges of dopamine to elicit normal effects in areas such as the nigrostriatal and tuberoinfundibular pathways, thus minimising the risk of side-effects such as pseudo-parkinsonism as well as elevations in prolactin. Some of the antagonised receptors (serotonin, norepinephrine) are actually autoreceptors whose blockade tends to increase the release of neurotransmitters.

At very low doses, quetiapine acts primarily as a histamine receptor blocker (antihistamine) and α1-adrenergic blocker. When the dose is increased, quetiapine activates the adrenergic system and binds strongly to serotonin receptors and autoreceptors. At high doses, quetiapine starts blocking significant amounts of dopamine receptors. Off-label prescriptions, e.g. for chronic insomnia, of low-dose quetiapine is not recommended due to the harmful side-effects.

When treating schizophrenia, antagonism of D2 receptor by quetiapine in the mesolimbic pathway relieves positive symptoms and antagonism of the 5HT2A receptor in the frontal cortex of the brain relieves negative symptoms. Quetiapine has fewer extrapyramidal side effects and is less likely to cause hyperprolactinemia when compared to other drugs used to treat schizophrenia, so is used as a first line treatment.

Pharmacokinetics

Peak levels of quetiapine occur 1.5 hours after a dose. The plasma protein binding of quetiapine is 83%. The major active metabolite of quetiapine is norquetiapine (N-desalkylquetiapine). Quetiapine has an elimination half-life of 6 or 7 hours. Its metabolite, norquetiapine, has a half-life of 9 to 12 hours. Quetiapine is excreted primarily via the kidneys (73%) and in faeces (20%) after hepatic metabolism, the remainder (1%) is excreted as the drug in its unmetabolised form.

Chemistry

Quetiapine is a tetracyclic compound and is closely related structurally to clozapine, olanzapine, loxapine, and other tetracyclic antipsychotics.

Synthesis

The synthesis of quetiapine begins with a dibenzothiazepinone. The lactam is first treated with phosphoryl chloride to produce a dibenzothiazepine. A nucleophilic substitution is used to introduce the sidechain.

Society and Culture

Regulatory Status

In the United States, the FDA has approved quetiapine for the treatment of schizophrenia and of acute manic episodes associated with bipolar disorder (bipolar mania) and for treatment of bipolar depression. In 2009, quetiapine XR was approved as adjunctive treatment of major depressive disorder.

Quetiapine received its initial indication from the FDA for treatment of schizophrenia in 1997. In 2004, it received its second indication for the treatment of mania-associated bipolar disorder. In 2007 and 2008, studies were conducted on quetiapine’s efficacy in treating generalized anxiety disorder and major depression.

Patent protection for the product ended in 2012; however, in a number of regions, the long-acting version remained under patent until 2017.

Lawsuits

In April 2010, the US Department of Justice fined Astra-Zeneca $520 million for the company’s aggressive marketing of Seroquel for off-label uses. According to the Department of Justice, “the company recruited doctors to serve as authors of articles that were ghostwritten by medical literature companies and about studies the doctors in question did not conduct. AstraZeneca then used those studies and articles as the basis for promotional messages about unapproved uses of Seroquel.”

Multiple lawsuits have been filed in relation to quetiapine’s side-effects, in particular, diabetes.

Approximately 10,000 lawsuits have been filed against AstraZeneca, alleging that quetiapine caused problems ranging from slurred speech and chronic insomnia to deaths.

Controversy

In 2004, a young man named Dan Markingson committed suicide in a controversial Seroquel clinical trial at the University of Minnesota while under an involuntary commitment order. A group of University of Minnesota bioethicists charged that the trial involved an alarming number of ethical violations.

Nurofen Plus Tampering Case

In August 2011, the UK’s Medicines and Healthcare products Regulatory Agency (MHRA) issued a class-4 drug alert following reports that some batches of Nurofen plus contained Seroquel XL tablets instead.

Following the issue of the Class-4 Drug Alert, Reckitt Benckiser (UK) Ltd received further reports of rogue blister strips in cartons of two additional batches of Nurofen Plus tablets. One of the new batches contained Seroquel XL 50 mg tablets and one contained the Pfizer product Neurontin 100 mg capsules.

Following discussions with the MHRA’s Defective Medicines Report Centre (DMRC), Reckitt Benckiser (UK) Ltd decided to recall all remaining unexpired stock of Nurofen Plus tablets in any pack size, leading to a Class-1 Drug Alert. The contamination was later traced to in-store tampering by a customer.

What is Valproate?

Introduction

Valproate and its valproic acid, sodium valproate, and valproate semisodium forms are medications primarily used to treat epilepsy and bipolar disorder and prevent migraine headaches. They are useful for the prevention of seizures in those with absence seizures, partial seizures, and generalised seizures. They can be given intravenously or by mouth, and the tablet forms exist in both long- and short-acting formulations.

Common side effects of valproate include nausea, vomiting, sleepiness, and dry mouth. Serious side effects can include liver failure, and regular monitoring of liver function tests is therefore recommended. Other serious risks include pancreatitis and an increased suicide risk. Valproate is known to cause serious abnormalities in babies if taken during pregnancy, and as such it is not typically recommended for women of childbearing age who have migraines.

Valproate’s precise mechanism of action is unclear. Proposed mechanisms include affecting GABA levels, blocking voltage-gated sodium channels, and inhibiting histone deacetylases. Valproic acid is a branched short-chain fatty acid (SCFA) made from valeric acid.

Valproate was first made in 1881 and came into medical use in 1962. It is on the World Health Organisation’s (WHO’s) List of Essential Medicines and is available as a generic medication. It is marketed under the brand names Depakote, among others. In 2018, it was the 131st most commonly prescribed medication in the United States, with more than 5 million prescriptions.

Brief History

Valproic acid was first synthesized in 1882 by Beverly S. Burton as an analogue of valeric acid, found naturally in valerian. Valproic acid is a carboxylic acid, a clear liquid at room temperature. For many decades, its only use was in laboratories as a “metabolically inert” solvent for organic compounds. In 1962, the French researcher Pierre Eymard serendipitously discovered the anticonvulsant properties of valproic acid while using it as a vehicle for a number of other compounds that were being screened for anti-seizure activity. He found it prevented pentylenetetrazol-induced convulsions in laboratory rats. It was approved as an antiepileptic drug in 1967 in France and has become the most widely prescribed antiepileptic drug worldwide. Valproic acid has also been used for migraine prophylaxis and bipolar disorder.

Terminology

Valproic acid (VPA) is an organic weak acid. The conjugate base is valproate. The sodium salt of the acid is sodium valproate and a coordination complex of the two is known as valproate semisodium.

Medical Uses

It is used primarily to treat epilepsy and bipolar disorder. It is also used to prevent migraine headaches.

Epilepsy

Valproate has a broad spectrum of anticonvulsant activity, although it is primarily used as a first-line treatment for tonic-clonic seizures, absence seizures and myoclonic seizures and as a second-line treatment for partial seizures and infantile spasms. It has also been successfully given intravenously to treat status epilepticus.

Mental Illness

Bipolar Disorder

Valproate products are also used to treat manic or mixed episodes of bipolar disorder.

Schizophrenia

A 2016 systematic review compared the efficacy of valproate as an add-on for people with schizophrenia.

There is limited evidence that adding valproate to antipsychotics may be effective for overall response and also for specific symptoms, especially in terms of excitement and aggression. Valproate was associated with a number of adverse events among which sedation and dizziness appeared more frequently than in the control groups.

Dopamine Dysregulation Syndrome

Based upon five case reports, valproic acid may have efficacy in controlling the symptoms of the dopamine dysregulation syndrome that arise from the treatment of Parkinson’s disease with levodopa.

Migraines

Valproate is also used to prevent migraine headaches. Because this medication can be potentially harmful to the fetus, valproate should be considered for those able to become pregnant only after the risks have been discussed.

Other

The medication has been tested in the treatment of AIDS and cancer, owing to its histone-deacetylase-inhibiting effects.

Adverse Effects

Most common adverse effects include:

  • Nausea (22%).
  • Drowsiness (19%).
  • Dizziness (12%).
  • Vomiting (12%).
  • Weakness (10%).

Serious adverse effects include:

  • Bleeding.
  • Low blood platelets.
  • Encephalopathy.
  • Suicidal behaviour and thoughts.
  • Low body temperature.

Valproic acid has a black box warning for hepatotoxicity, pancreatitis, and foetal abnormalities.

There is evidence that valproic acid may cause premature growth plate ossification in children and adolescents, resulting in decreased height. Valproic acid can also cause mydriasis, a dilation of the pupils. There is evidence that shows valproic acid may increase the chance of polycystic ovary syndrome (PCOS) in women with epilepsy or bipolar disorder. Studies have shown this risk of PCOS is higher in women with epilepsy compared to those with bipolar disorder. Weight gain is also possible.

Pregnancy

Valproate causes birth defects; exposure during pregnancy is associated with about three times as many major abnormalities as usual, mainly spina bifida with the risks being related to the strength of medication used and use of more than one drug. More rarely, with several other defects, including a “valproate syndrome”. Characteristics of this valproate syndrome include facial features that tend to evolve with age, including a triangle-shaped forehead, tall forehead with bifrontal narrowing, epicanthic folds, medial deficiency of eyebrows, flat nasal bridge, broad nasal root, anteverted nares, shallow philtrum, long upper lip and thin vermillion borders, thick lower lip and small downturned mouth. While developmental delay is usually associated with altered physical characteristics (dysmorphic features), this is not always the case.

Children of mothers taking valproate during pregnancy are at risk for lower IQs. Maternal valproate use during pregnancy increased the probability of autism in the offspring compared to mothers not taking valproate from 1.5% to 4.4%. A 2005 study found rates of autism among children exposed to sodium valproate before birth in the cohort studied were 8.9%. The normal incidence for autism in the general population is estimated at less than one percent. A 2009 study found that the 3-year-old children of pregnant women taking valproate had an IQ nine points lower than that of a well-matched control group. However, further research in older children and adults is needed.

Sodium valproate has been associated with paroxysmal tonic upgaze of childhood, also known as Ouvrier–Billson syndrome, from childhood or foetal exposure. This condition resolved after discontinuing valproate therapy.

Women who intend to become pregnant should switch to a different medication if possible, or decrease their dose of valproate. Women who become pregnant while taking valproate should be warned that it causes birth defects and cognitive impairment in the newborn, especially at high doses (although valproate is sometimes the only drug that can control seizures, and seizures in pregnancy could have worse outcomes for the foetus than exposure to valproate). Studies have shown that taking folic acid supplements can reduce the risk of congenital neural tube defects. The use of valproate for migraine or bipolar disorder during pregnancy is contraindicated in the European Union, and the medicines are not recommended for epilepsy during pregnancy unless there is no other effective treatment available.

Elderly

Valproate in elderly people with dementia caused increased sleepiness. More people stopped the medication for this reason. Additional side effects of weight loss and decreased food intake was also associated in one half of people who become sleepy.

Contraindications

Contraindications include:

  • Pre-existing acute or chronic liver dysfunction or family history of severe liver inflammation (hepatitis), particularly medicine related.
  • Known hypersensitivity to valproate or any of the ingredients used in the preparation.
  • Urea cycle disorders.
  • Hepatic porphyria.
  • Hepatotoxicity.
  • Mitochondrial disease.
  • Pancreatitis.
  • Porphyria.

Interactions

Valproate inhibits CYP2C9, glucuronyl transferase, and epoxide hydrolase and is highly protein bound and hence may interact with drugs that are substrates for any of these enzymes or are highly protein bound themselves. It may also potentiate the CNS depressant effects of alcohol. It should not be given in conjunction with other antiepileptics due to the potential for reduced clearance of other antiepileptics (including carbamazepine, lamotrigine, phenytoin and phenobarbitone) and itself. It may also interact with:

  • Aspirin: may increase valproate concentrations. May also interfere with valproate’s metabolism.
  • Benzodiazepines: may cause CNS depression and there are possible pharmacokinetic interactions.
  • Carbapenem antibiotics: reduces valproate levels, potentially leading to seizures.
  • Cimetidine: inhibits valproate’s metabolism in the liver, leading to increased valproate concentrations.
  • Erythromycin: inhibits valproate’s metabolism in the liver, leading to increased valproate concentrations.
  • Ethosuximide: may increase ethosuximide concentrations and lead to toxicity.
  • Felbamate: may increase plasma concentrations of valproate.
  • Mefloquine: may increase valproate metabolism combined with the direct epileptogenic effects of mefloquine.
  • Oral contraceptives: may reduce plasma concentrations of valproate.
  • Primidone: may accelerate metabolism of valproate, leading to a decline of serum levels and potential breakthrough seizure.
  • Rifampin: increases the clearance of valproate, leading to decreased valproate concentrations
  • Warfarin: may increase warfarin concentration and prolong bleeding time.
  • Zidovudine: may increase zidovudine serum concentration and lead to toxicity.

Overdose and Toxicity

Excessive amounts of valproic acid can result in sleepiness, tremor, stupor, respiratory depression, coma, metabolic acidosis, and death. In general, serum or plasma valproic acid concentrations are in a range of 20-100 mg/l during controlled therapy, but may reach 150-1500 mg/l following acute poisoning. Monitoring of the serum level is often accomplished using commercial immunoassay techniques, although some laboratories employ gas or liquid chromatography. In contrast to other antiepileptic drugs, at present there is little favourable evidence for salivary therapeutic drug monitoring. Salivary levels of valproic acid correlate poorly with serum levels, partly due to valproate’s weak acid property (pKa of 4.9).

In severe intoxication, hemoperfusion or hemofiltration can be an effective means of hastening elimination of the drug from the body. Supportive therapy should be given to all patients experiencing an overdose and urine output should be monitored. Supplemental L-carnitine is indicated in patients having an acute overdose and also prophylactically in high risk patients. Acetyl-L-carnitine lowers hyperammonemia less markedly than L-carnitine.

Pharmacology

Pharmacodynamics

Although the mechanism of action of valproate is not fully understood, traditionally, its anticonvulsant effect has been attributed to the blockade of voltage-gated sodium channels and increased brain levels of gamma-aminobutyric acid (GABA). The GABAergic effect is also believed to contribute towards the anti-manic properties of valproate. In animals, sodium valproate raises cerebral and cerebellar levels of the inhibitory synaptic neurotransmitter, GABA, possibly by inhibiting GABA degradative enzymes, such as GABA transaminase, succinate-semialdehyde dehydrogenase and by inhibiting the re-uptake of GABA by neuronal cells.

Prevention of neurotransmitter-induced hyperexcitability of nerve cells, via Kv7.2 channel and AKAP5, may also contribute to its mechanism. Also, it has been shown to protect against a seizure-induced reduction in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) as a potential therapeutic mechanism.

It also has histone-deacetylase-inhibiting effects. The inhibition of histone deacetylase, by promoting more transcriptionally active chromatin structures, likely presents the epigenetic mechanism for regulation of many of the neuroprotective effects attributed to valproic acid. Intermediate molecules mediating these effects include VEGF, BDNF, and GDNF.

Endocrine Actions

Valproic acid has been found to be an antagonist of the androgen and progesterone receptors, and hence as a nonsteroidal antiandrogen and antiprogestogen, at concentrations much lower than therapeutic serum levels. In addition, the drug has been identified as a potent aromatase inhibitor, and suppresses oestrogen concentrations. These actions are likely to be involved in the reproductive endocrine disturbances seen with valproic acid treatment.

Valproic acid has been found to directly stimulate androgen biosynthesis in the gonads via inhibition of histone deacetylases and has been associated with hyperandrogenism in women and increased 4-androstenedione levels in men. High rates of polycystic ovary syndrome and menstrual disorders have also been observed in women treated with valproic acid.

Metabolism

The vast majority of valproate metabolism occurs in the liver. In adult patients taking valproate alone, 30-50% of an administered dose is excreted in urine as a glucuronide conjugate. The other major pathway in the metabolism of valproate is mitochondrial beta-oxidation, which typically accounts for over 40% of an administered dose. Typically, less than 20% of an administered dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose of valproate is excreted unchanged (i.e. as valproate) in urine.

Valproate is known to be metabolized by the Cytochrome P450 enzymes: CYP2A6, CYP2B6, CYP2C9, and CYP3A5. It is also known to be metabolised by the UDP-glucuronosyltransferase enzymes: UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15.[70] Some of the known metabolites of valproate by these enzymes and uncharacterized enzymes include: 2-ene-valproic acid, 3Z-ene-valproic acid, 3E-ene-valproic acid, 4-ene-valproic acid, valproic acid β-O-glucuronide, 3-oxovalproic acid, 3-hydroxyvalproic acid, 4-hydroxyvalproic acid, 5-hydroxyvalproic acid, and valproyl-CoA, among others.

Chemistry

Valproic acid is a branched short-chain fatty acid and the 2-n-propyl derivative of valeric acid.

Society and Culture

Valproate is available as a generic medication.

Off-Label Uses

In 2012, pharmaceutical company Abbott paid $1.6 billion in fines to US federal and state governments for illegal promotion of off-label uses for Depakote, including the sedation of elderly nursing home residents.

Some studies have suggested that valproate may reopen the critical period for learning absolute pitch and possibly other skills such as language.

Formulations

Valproate exists in two main molecular variants: sodium valproate and valproic acid without sodium (often implied by simply valproate). A mixture between these two is termed semisodium valproate. It is unclear whether there is any difference in efficacy between these variants, except from the fact that about 10% more mass of sodium valproate is needed than valproic acid without sodium to compensate for the sodium itself.

Brand Names of Valproic Acid

Branded products include:

  • Absenor (Orion Corporation Finland).
  • Convulex (G.L. Pharma GmbH Austria).
  • Depakene (Abbott Laboratories in US and Canada).
  • Depakine (Sanofi Aventis France).
  • Depakine (Sanofi Synthelabo Romania).
  • Depalept (Sanofi Aventis Israel).
  • Deprakine (Sanofi Aventis Finland).
  • Encorate (Sun Pharmaceuticals India).
  • Epival (Abbott Laboratories US and Canada).
  • Epilim (Sanofi Synthelabo Australia and South Africa).
  • Stavzor (Noven Pharmaceuticals Inc.).
  • Valcote (Abbott Laboratories Argentina).
  • Valpakine (Sanofi Aventis Brazil).
  • Orfiril (Desitin Arzneimittel GmbH Norway).

Brand names of sodium valproate

  • Portugal:
    • Tablets – Diplexil-R by Bial.
  • United States:
    • Intravenous injection – Depacon by Abbott Laboratories.
    • Syrup – Depakene by Abbott Laboratories. (Note Depakene capsules are valproic acid).
    • Depakote tablets are a mixture of sodium valproate and valproic acid.
    • Tablets – Eliaxim by Bial.
  • Australia:
    • Epilim Crushable Tablets Sanofi.
    • Epilim Sugar Free Liquid Sanofi.
    • Epilim Syrup Sanofi.
    • Epilim Tablets Sanofi.
    • Sodium Valproate Sandoz Tablets Sanofi.
    • Valpro Tablets Alphapharm.
    • Valproate Winthrop Tablets Sanofi.
    • Valprease tablets Sigma.
  • New Zealand:
    • Epilim by Sanofi-Aventis.
  • UK:
    • Depakote Tablets (as in USA).
    • Tablets – Orlept by Wockhardt and Epilim by Sanofi.
    • Oral solution – Orlept Sugar Free by Wockhardt and Epilim by Sanofi.
    • Syrup – Epilim by Sanofi-Aventis.
    • Intravenous injection – Epilim Intravenous by Sanofi.
    • Extended release tablets – Epilim Chrono by Sanofi is a combination of sodium valproate and valproic acid in a 2.3:1 ratio.
    • Enteric-coated tablets – Epilim EC200 by Sanofi is a 200-mg sodium valproate enteric-coated tablet.
  • UK Only:
    • Capsules – Episenta prolonged release by Beacon.
    • Sachets – Episenta prolonged release by Beacon.
    • Intravenous solution for injection – Episenta solution for injection by Beacon.
  • Germany, Switzerland, Norway, Finland, Sweden:
    • Tablets – Orfiril by Desitin Pharmaceuticals.
    • Intravenous injection – Orfiril IV by Desitin Pharmaceuticals.
  • South Africa:
    • Syrup – Convulex by Byk Madaus.
    • Tablets – Epilim by Sanofi-synthelabo.
  • Malaysia:
    • Tablets – Epilim by Sanofi-Aventis..
  • Romania:
    • Companies are SANOFI-AVENTIS FRANCE, GEROT PHARMAZEUTIKA GMBH and DESITIN ARZNEIMITTEL GMBH.
    • Types are Syrup, Extended release mini tablets, Gastric resistant coated tablets, Gastric resistant soft capsules, Extended release capsules, Extended release tablets and Extended release coated tablets.
  • Canada:
    • Intravenous injection – Epival or Epiject by Abbott Laboratories.
    • Syrup – Depakene by Abbott Laboratories its generic formulations include Apo-Valproic and ratio-Valproic.
  • Japan:
    • Tablets – Depakene by Kyowa Hakko Kirin.
    • Extended release tablets – Depakene-R by Kyowa Hakko Kogyo and Selenica-R by Kowa.
    • Syrup – Depakene by Kyowa Hakko Kogyo.
  • Europe:
    • In much of Europe, Dépakine and Depakine Chrono (tablets) are equivalent to Epilim and Epilim Chrono above.
  • Taiwan:
    • Tablets (white round tablet) – Depakine (Chinese: 帝拔癲; pinyin: di-ba-dian) by Sanofi Winthrop Industrie (France)>
  • Iran:
    • Tablets – Epival 200 (enteric coated tablet) and Epival 500 (extended release tablet) by Iran Najo.
    • Slow release tablets – Depakine Chrono by Sanofi Winthrop Industrie (France).
  • Israel:
    • Depalept and Depalept Chrono (extended release tablets) are equivalent to Epilim and Epilim Chrono above. Manufactured and distributed by Sanofi-Aventis.
  • India, Russia and CIS countries:
    • Valparin Chrono by Torrent Pharmaceuticals India.
    • Valprol CR by Intas Pharmaceutical (India).
    • Encorate Chrono by Sun Pharmaceutical (India).
    • Serven Chrono by Leeven APL Biotech (India).

Brand Names of Valproate Semisodium

  • Brazil – Depakote by Abbott Laboratories and Torval CR by Torrent do Brasil.
  • Canada – Epival by Abbott Laboratories.
  • Mexico – Epival and Epival ER (extended release) by Abbott Laboratories.
  • United Kingdom – Depakote (for psychiatric conditions) and Epilim (for epilepsy) by Sanofi-Aventis and generics.
  • United States – Depakote and Depakote ER (extended release) by Abbott Laboratories and generics.
  • India – Valance and Valance OD by Abbott Healthcare Pvt Ltd, Divalid ER by Linux laboratories Pvt Ltd, Valex ER by Sigmund Promedica, Dicorate by Sun Pharma.
  • Germany – Ergenyl Chrono by Sanofi-Aventis and generics.
  • Chile – Valcote and Valcote ER by Abbott Laboratories.
  • France and other European countries — Depakote.
  • Peru – Divalprax by AC Farma Laboratories.
  • China – Diprate OD.

What is Ziprasidone?

Introduction

Ziprasidone, sold under the brand name Geodon among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder.

It may be used by mouth and by injection into a muscle (IM). The IM form may be used for acute agitation in people with schizophrenia.

Common side effects include dizziness, drowsiness, dry mouth, and twitches. Although it can also cause weight gain, the risk is much lower than for other atypical antipsychotics. How it works is not entirely clear but is believed to involve effects on serotonin and dopamine in the brain.

Ziprasidone was approved for medical use in the United States in 2001. The pills are made up of the hydrochloride salt, ziprasidone hydrochloride. The intramuscular form is the mesylate, ziprasidone mesylate trihydrate, and is provided as a lyophilised powder. In 2017, it was the 261st most commonly prescribed medication in the United States, with more than one million prescriptions.

Brief History

Ziprasidone is chemically similar to risperidone, of which it is a structural analogue. It was first synthesized in 1987 at the Pfizer central research campus in Groton, Connecticut.

Phase I trials started in 1995. In 1998 ziprasidone was approved in Sweden. After the FDA raised concerns about long QT syndrome, more clinical trials were conducted and submitted to the FDA, which approved the drug on 05 February 2001.

Medical Uses

Ziprasidone is approved by the US Food and Drug Administration (FDA) for the treatment of schizophrenia as well as acute mania and mixed states associated with bipolar disorder. Its intramuscular injection form is approved for acute agitation in schizophrenic patients for whom treatment with just ziprasidone is appropriate.

In a 2013 study in a comparison of 15 antipsychotic drugs in effectiveness in treating schizophrenic symptoms, ziprasidone demonstrated mild-standard effectiveness. 15% more effective than lurasidone and iloperidone, approximately as effective as chlorpromazine and asenapine, and 9-13% less effective than haloperidol, quetiapine, and aripiprazole. Ziprasidone is effective in the treatment of schizophrenia, though evidence from the CATIE trials suggests it is less effective than olanzapine, and equally as effective compared to quetiapine. There are higher discontinuation rates for lower doses of ziprasidone, which are also less effective than higher doses.

Adverse Effects

Ziprasidone (and all other second generation antipsychotics (SGAs)) received a black box warning due to increased mortality in elderly patients with dementia-related psychosis.

Sleepiness and headache are very common adverse effects (>10%).

Common adverse effects (1-10%), include producing too much saliva or having dry mouth, runny nose, respiratory disorders or coughing, nausea and vomiting, stomach aches, constipation or diarrhoea, loss of appetite, weight gain (but the smallest risk for weight gain compared to other antipsychotics), rashes, fast heart beats, blood pressure falling when standing up quickly, muscle pain, weakness, twitches, dizziness, and anxiety. Extrapyramidal symptoms are also common and include tremor, dystonia (sustained or repetitive muscle contractions), akathisia (the feeling of a need to be in motion), parkinsonism, and muscle rigidity; in a 2013 meta-analysis of 15 antipsychotic drugs, ziprasidone ranked 8th for such side effects.

Ziprasidone is known to cause activation into mania in some bipolar patients.

This medication can cause birth defects, according to animal studies, although this side effect has not been confirmed in humans.

Recently, the FDA required the manufacturers of some atypical antipsychotics to include a warning about the risk of hyperglycaemia and Type II diabetes with atypical antipsychotics. Some evidence suggests that ziprasidone does not cause insulin resistance to the degree of other atypical antipsychotics, such as olanzapine. Weight gain is also less of a concern with ziprasidone compared to other atypical antipsychotics. In fact, in a trial of long term therapy with ziprasidone, overweight patients (BMI > 27) actually had a mean weight loss overall. According to the manufacturer insert, ziprasidone caused an average weight gain of 2.2 kg (4.8 lbs), which is significantly lower than other atypical antipsychotics, making this medication better for patients that are concerned about their weight. In December 2014, the FDA warned that ziprasidone could cause a potentially fatal skin reaction, Drug Reaction with Eosinophilia and Systemic Symptoms, although this was believed to occur only rarely.

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.

Pharmacology

Pharmacodynamics

Correspondence to Clinical Effects

Ziprasidone mostly affects the receptors of dopamine (D2), serotonin (5-HT2A, partially 5-HT1A, 5-HT2C, and 5-HT1D) and epinephrine/norepinephrine (α1) to a high degree, while of histamine (H1) – moderately. It also somewhat inhibits reuptake of serotonin and norepinephrine, though not dopamine.

Ziprasidone’s efficacy in treating the positive symptoms of schizophrenia is believed to be mediated primarily via antagonism of the dopamine receptors, specifically D2. Blockade of the 5-HT2A receptor may also play a role in its effectiveness against positive symptoms, though the significance of this property in antipsychotic drugs is still debated among researchers. Blockade of 5-HT2A and 5-HT2C and activation of 5-HT1A as well as inhibition of the reuptake of serotonin and norepinephrine may all contribute to its ability to alleviate negative symptoms. The relatively weak antagonistic actions of ziprasidone on the α1-adrenergic receptor likely in part explains some of its side effects, such as orthostatic hypotension. Unlike many other antipsychotics, ziprasidone has no significant affinity for the mACh receptors, and as such lacks any anticholinergic side effects. Like most other antipsychotics, ziprasidone is sedating due primarily to serotonin and dopamine blockade.

Pharmacokinetics

The systemic bioavailability of ziprasidone is 100% when administered intramuscularly and 60% when administered orally without food.

After a single dose intramuscular administration, the peak serum concentration typically occurs at about 60 minutes after the dose is administered, or earlier. Steady state plasma concentrations are achieved within one to three days. Exposure increases in a dose-related manner and following three days of intramuscular dosing, little accumulation is observed.

The bioavailability of the drug is reduced by approximately 50% if a meal is not eaten before Ziprasidone ingestion.

Ziprasidone is hepatically metabolized by aldehyde oxidase; minor metabolism occurs via cytochrome P450 3A4 (CYP3A4). Medications that induce (e.g. carbamazepine) or inhibit (e.g. ketoconazole) CYP3A4 have been shown to decrease and increase, respectively, blood levels of ziprasidone.

Its biological half-life time is 10 hours at doses of 80-120 milligrams.

Society and Culture

Lawsuit

In September 2009, the US Justice Department announced that Pfizer had been ordered to pay a historic fine of $2.3 billion as a penalty for fraudulent marketing of several drugs, including Geodon. Pfizer had illegally promoted Geodon and submitted false claims to government health care programs for uses that were not medically accepted indications. The civil settlement also resolves allegations that Pfizer paid kickbacks to health care providers to induce them to prescribe Geodon, as well as other drugs. This was the largest civil fraud settlement in history against a pharmaceutical company.

What is Cyclothymia?

Introduction

Cyclothymia, also known as cyclothymic disorder, is a mental and behavioural disorder that involves numerous periods of symptoms of depression and periods of symptoms of elevated mood.

These symptoms, however, are not sufficient to be a major depressive episode or a hypomanic episode. Symptoms must last for more than one year in children and two years in adults.

The cause of cyclothymia is unknown. Risk factors include a family history of bipolar disorder. Cyclothymia differs from bipolar in that major depression, mania, or hypomania have never occurred.

Treatment is generally with counselling and mood stabilisers such as lithium. It is estimated that 0.4-1% of people have cyclothymia at some point in their life. Onset is typically in late childhood to early adulthood. Males and females are affected equally often.

Brief History

In 1883, Karl Ludwig Kahlbaum identified a disorder characterised by recurring mood cycles. The disorder contained both melancholic and manic episodes that occurred in a milder form than in bipolar disorder. This condition was coined “cyclothymia” by Kahlbaum and his student Ewald Hecker. Kahlbaum developed his theory of cyclothymia through his work with people presenting with these symptoms at the Kahlbaum Sanitarium in Goerlitz, Silesia (Germany). He was recognised as a leading hypnotherapist and psychotherapist of his day. He was a progressive in the field of mental health, believing that mental illness should not carry a stigma and that people dealing with mental health issues should be treated humanely. Kalhbaum was the first to recognise that people with cyclothymia often do not seek help for the disorder due to its mild symptoms.

Cyclothymia has been conceptualised in a variety of ways, including as a subtype of bipolar disorder, a temperament, a personality trait, and a personality disorder. There is also an argument that cyclothymia should be considered a neurodevelopmental disorder. The two defining features of the disorder, according to DSM-5, are the presence of depressive and hypomanic symptoms, not meeting the threshold for a depressive or hypomanic episode. Cyclothymia is also classified as a subtype of bipolar disorder in DSM-5, but some researchers disagree with this classification and argue that it should be primarily defined as an exaggeration of mood and emotional instability. In the past, cyclothymia has been conceptualised to include other characteristics in addition to the flux between depression and hypomania, such as mood reactivity, impulsivity, and anxiety.

Symptoms

People with cyclothymia experience both depressive phases and hypomanic phases (which are less severe than a full hypomanic episode). The depressive and manic symptoms in cyclothymia last for variable amounts of time due to the unstable and reactive nature of the disorder. The depressive phases are similar to major depressive disorder and are characterised by dulled thoughts and sensations and the lack of motivation for intellectual or social activities. Most people with cyclothymia are generally fatigued and tend to sleep frequently and for long periods of time. However, other people experience insomnia.

Other symptoms of cyclothymic depression include indifference toward people or activities that used to be extremely important. Cyclothymic depression also leads to difficulty making decisions. In addition, people with this condition tend to be critical and complain easily. Suicidal thoughts are common, even in mild forms of cyclothymia. In the depressive state, people with cyclothymia also experience physical complaints including frequent headaches, tightness in the head and chest, an empty sensation in the head, weakness, weight loss, and hair loss.

The distinguishing factor between typical depression and cyclothymic depression is that in cyclothymic depression, there are instances of hypomania. People with cyclothymia can switch from the depressive state to the hypomanic state without warning to them or others. The duration and frequency of phases is unpredictable.

In the hypomanic state, people’s thoughts become faster and they become more sociable and talkative. They may engage in spending sprees, spontaneous actions, have heightened self-esteem, and greater vanity. In contrast to a regular manic state that would be associated with bipolar I, symptoms in the hypomanic phase generally occur in a less severe form.

Comorbidities

Cyclothymia commonly occurs in conjunction with other disorders. Between 20-50 percent of people with depression, anxiety, and related disorders also have cyclothymia. When people with cyclothymia seek mental health resources it tends to be for symptoms of their comorbid condition rather than for their symptoms of cyclothymia. In children and adolescents, the most common comorbidities with cyclothymia are anxiety disorders, impulse control issues, eating disorders, and ADHD. In adults, cyclothymia also tends to be comorbid with impulse control issues. Sensation-seeking behaviours occur in hypomanic states. These often include gambling and compulsive sexuality in men, or compulsive buying and binge eating in women.

In addition to sensation-related disorders, cyclothymia has also been associated with atypical depression. In one study, a connection was found between interpersonal sensitivity, mood reactivity (i.e. responding to actual or potential positive events with brighter mood), and cyclothymic mood swings, all of which are symptoms of atypical depression. Cyclothymia also tends to occur in conjunction with separation anxiety, where a person has anxiety as a result of separation from a caregiver, friend, or loved one. Other issues that tend to co-occur with cyclothymia include social anxiety, fear of rejection and a tendency toward hostility to those connected with past pain and rejection. People with cyclothymia tend to seek intense interpersonal relationships when in a hypomanic state and isolation when in a depressed state. This generally leads to short, tumultuous relationships.

Causes

The cause is unknown. Risk factors include a family history of bipolar disorder.

First-degree relatives of people with cyclothymia have major depressive disorder, bipolar I disorder, and bipolar II disorder more often than the general population. Substance-related disorders also may be at a higher risk within the family. First-degree relatives of a bipolar I individuals may have a higher risk of cyclothymic disorder than the general population.

Diagnosis

Cyclothymia is classified in DSM-5 as a subtype of bipolar disorder. The criteria are:

  • Periods of elevated mood and depressive symptoms for at least half the time during the last two years for adults and one year for children and teenagers.
  • Periods of stable moods last only two months at most.
  • Symptoms create significant problems in one or more areas of life.
  • Symptoms do not meet the criteria for bipolar disorder, major depression, or another mental disorder.
  • Symptoms are not caused by substance use or a medical condition.

The DSM-5 criteria for cyclothymia are restrictive according to some researchers. This affects the diagnosis of cyclothymia because fewer people get diagnosed than potentially could. This means that a person who has some symptoms of the disorder might not be able to get treatment because they do not meet all of the necessary criteria described in DSM-5. Furthermore, it also leads to more attention being placed on depression and other bipolar-spectrum disorders because if a person does not meet all the criteria for cyclothymia they are often given a depression or bipolar spectrum diagnosis. Improper diagnosis may lead some people with cyclothymia to be treated for a comorbid disorder rather than having their cyclothymic tendencies addressed.

Cyclothymia is often not recognised by the affected individual or medical professionals due to its ostensibly mild symptoms. In addition, it is difficult to identify and classify. Due to disagreement and misconceptions among health and mental health professionals, cyclothymia is often diagnosed as “bipolar not otherwise specified”. Cyclothymia is also often confused with borderline personality disorder due to their similar symptoms, especially in older adolescents and young adults.

Most people with the disorder present in a depressive state, not realising that their hypomanic states are abnormal. Mild manic episodes tend to be interpreted as part of the person’s personality or simply a heightened mood. In addition, the disorder often manifests during childhood or adolescence, making it even more difficult for the person to distinguish between symptoms of the disorder and their personality. For example, people may think that they just suffer from mood swings and not realise that these are a result of a psychiatric condition.

Management

Cognitive behavioural therapy (CBT) is considered potentially effective for people diagnosed with cyclothymia.

Medication can be used in addition to behavioural approaches. However, mood stabilisers should be used before antidepressants, and if antidepressants are used they should be used with caution. Antidepressants are a concern due to the possibility of inducing hypomanic switches or rapid cycling.

Epidemiology

Cyclothymia, known today as cyclothymic disorder, tends to be underdiagnosed due to its low intensity. The exact rates for cyclothymia have not been widely studied. Some studies estimate that between 5 and 8% are affected at some point in their life whereas other studies suggest a rate ranging from 0.4 to 2.5%.

Males appear to be affected equally often, though women are more likely to receive treatment. Cyclothymia is diagnosed in around fifty percent of people with depression who are evaluated in psychiatric outpatient settings.

Etymology

Cyclothymia is derived from the Greek word κυκλοθυμία (from κῦκλος kyklos, “circle” and θυμός thymos, “mood, emotion”). Therefore, it means “to cycle or circle between moods or emotions”.

Research

Whether subtypes of bipolar disorder, such as cyclothymia, truly represent separate disorders or are part of a unique bipolar spectrum is debated in research. Cyclothymia is typically not described in research studies or diagnosed in clinical settings, making it less recognisable and less understood by professionals. This absence of cyclothymia in research and clinical settings suggests that cyclothymia is either being diagnosed as another mood disorder or as a non-affective psychiatric disorder or not coming to scientific or clinical attention due to a lack of diagnostic clarity or because the nature of cyclothymia is still highly contested. Additionally, the current diagnostic criterion for cyclothymia emphasizes that symptoms are persistent, which suggests that they are enduring traits rather than a psychological state, thus, it has been argued that it should be diagnosed as a personality disorder. Since the symptoms tend to overlap with personality disorders, the validity and distinction between these two diagnostic categories has been debated.

Lastly, the tendency of cyclothymia to be comorbid with other mental disorders makes diagnosis difficult. These issues prevent consensus on the definition of cyclothymia and its relationship with other mental disorders among researchers and clinicians. This lack of consensus on an operational definition and symptom presentation is especially pronounced with children and adolescents because the diagnostic criteria have not been adequately adapted to take into account their developmental level.

Society and Culture

Actor Stephen Fry has spoken about his experience with cyclothymia, which was depicted in the documentary Stephen Fry: The Secret Life of the Manic Depressive.

Singer Charlene Soraia had cyclothymia and wrote a song about her experiences with the disorder.

What is an Antipsychotic?

Introduction

Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of other psychotic disorders.

They are also the mainstay together with mood stabilisers in the treatment of bipolar disorder.

Recent research has shown that use of any antipsychotic results in smaller brain tissue volumes and that this brain shrinkage is dose dependent and time dependent. A review of the research has also reinforced this effect.

The use of antipsychotics may result in many unwanted side effects such as involuntary movement disorders, gynecomastia, impotence, weight gain and metabolic syndrome. Long-term use can produce adverse effects such as tardive dyskinesia.

First-generation antipsychotics, known as typical antipsychotics, were first introduced in the 1950s, and others were developed until the early 1970s. Second-generation drugs, known as atypical antipsychotics, were introduced firstly with clozapine in the early 1970s followed by others. Both generations of medication block receptors in the brain for dopamine, but atypicals tend to act on serotonin receptors as well. Neuroleptic, originating from Greek: νεῦρον (neuron) and λαμβάνω (take hold of) – thus meaning “which takes the nerve” – refers to both common neurological effects and side effects.

Brief History

The original antipsychotic drugs were happened upon largely by chance and then tested for their effectiveness. The first, chlorpromazine, was developed as a surgical anaesthetic. It was first used on psychiatric patients because of its powerful calming effect; at the time it was regarded as a non-permanent “pharmacological lobotomy”. Lobotomy at the time was used to treat many behavioural disorders, including psychosis, although its effect was to markedly reduce behaviour and mental functioning of all types. However, chlorpromazine proved to reduce the effects of psychosis in a more effective and specific manner than lobotomy, even though it was known to be capable of causing severe sedation. The underlying neurochemistry involved has since been studied in detail, and subsequent antipsychotic drugs have been discovered by an approach that incorporates this sort of information.

The discovery of chlorpromazine’s psychoactive effects in 1952 led to further research that resulted in the development of antidepressants, anxiolytics, and the majority of other drugs now used in the management of psychiatric conditions. In 1952, Henri Laborit described chlorpromazine only as inducing indifference towards what was happening around them in nonpsychotic, non-manic patients, and Jean Delay and Pierre Deniker described it as controlling manic or psychotic agitation. The former claimed to have discovered a treatment for agitation in anyone, and the latter team claimed to have discovered a treatment for psychotic illness.

Until the 1970s there was considerable debate within psychiatry on the most appropriate term to use to describe the new drugs. In the late 1950s the most widely used term was “neuroleptic”, followed by “major tranquilizer” and then “ataraxic”. The first recorded use of the term tranquilizer dates from the early nineteenth century. In 1953 Frederik F. Yonkman, a chemist at the Swiss-based Cibapharmaceutical company, first used the term tranquiliser to differentiate reserpine from the older sedatives. The word neuroleptic was coined in 1955 by Delay and Deniker after their discovery (1952) of the antipsychotic effects of chlorpromazine. It is derived from the Greek: “νεῦρον” (neuron, originally meaning “sinew” but today referring to the nerves) and “λαμβάνω” (lambanō, meaning “take hold of”). Thus, the word means taking hold of one’s nerves. It was often taken to refer also to common side effects such as reduced activity in general, as well as lethargy and impaired motor control. Although these effects are unpleasant and in some cases harmful, they were at one time, along with akathisia, considered a reliable sign that the drug was working. The term “ataraxy” was coined by the neurologist Howard Fabing and the classicist Alister Cameron to describe the observed effect of psychic indifference and detachment in patients treated with chlorpromazine. This term derived from the Greek adjective “ἀτάρακτος” (ataraktos), which means “not disturbed, not excited, without confusion, steady, calm”. In the use of the terms “tranquiliser” and “ataractic”, medical practitioners distinguished between the “major tranquilizers” or “major ataractics”, which referred to drugs used to treat psychoses, and the “minor tranquilizers” or “minor ataractics”, which referred to drugs used to treat neuroses. While popular during the 1950s, these terms are infrequently used today. They are being abandoned in favour of “antipsychotic”, which refers to the drug’s desired effects. Today, “minor tranquiliser” can refer to anxiolytic and/or hypnotic drugs such as the benzodiazepines and nonbenzodiazepines, which have some antipsychotic properties and are recommended for concurrent use with antipsychotics, and are useful for insomnia or drug-induced psychosis. They are potentially addictive sedatives.

Antipsychotics are broadly divided into two groups, the typical or first-generation antipsychotics and the atypical or second-generation antipsychotics. The difference between first- and second-generation antipsychotics is a subject of debate. The second-generation antipsychotics are generally distinguishable by the presence of 5HT2A receptor antagonism and a corresponding lower propensity for extrapyramidal side effects compared to first-generation antipsychotics.

Medical Uses

Antipsychotics are most frequently used for the following conditions:

  • Schizophrenia.
  • Schizoaffective disorder most commonly in conjunction with either an antidepressant (in the case of the depressive subtype) or a mood stabiliser (in the case of the bipolar subtype).
  • Bipolar disorder (acute mania and mixed episodes) may be treated with either typical or atypical antipsychotics, although atypical antipsychotics are usually preferred because they tend to have more favourable adverse effect profiles and, according to a recent meta-analysis, they tend to have a lower liability for causing conversion from mania to depression.
  • Psychotic depression. In this indication it is a common practice for the psychiatrist to prescribe a combination of an atypical antipsychotic and an antidepressant as this practice is best supported by the evidence.
  • Treatment resistant depression as an adjunct to standard antidepressant therapy.

Antipsychotics are generally not recommended for treating behavioural problems associated with dementia, given that the risk of use tends to be greater than the potential benefit. The same can be said for insomnia, in which they are not recommended as first-line therapy. There are evidence-based indications for using antipsychotics in children (e.g. tic disorder, bipolar disorder, psychosis), but the use of antipsychotics outside of those contexts (e.g. to treat behavioural problems) warrants significant caution.

Schizophrenia

Antipsychotic drug treatment is a key component of schizophrenia treatment recommendations by the National Institute of Health and Care Excellence (NICE), the American Psychiatric Association, and the British Society for Psychopharmacology. The main aim of treatment with antipsychotics is to reduce the positive symptoms of psychosis that include delusions and hallucinations. There is mixed evidence to support a significant impact of antipsychotic use on negative symptoms (such as apathy, lack of emotional affect, and lack of interest in social interactions) or on the cognitive symptoms (memory impairments, reduced ability to plan and execute tasks). In general, the efficacy of antipsychotic treatment in reducing both positive and negative symptoms appears to increase with increasing severity of baseline symptoms. All antipsychotic medications work relatively the same way, by antagonising D2 dopamine receptors. However, there are some differences when it comes to typical and atypical antipsychotics. For example, atypical antipsychotic medications have been seen to lower the neurocognitive impairment associated with schizophrenia more so than conventional antipsychotics, although the reasoning and mechanics of this are still unclear to researchers.

Applications of antipsychotic drugs in the treatment of schizophrenia include prophylaxis in those showing symptoms that suggest that they are at high risk of developing psychosis, treatment of first episode psychosis, maintenance therapy (a form of prophylaxis, maintenance therapy aims to maintain therapeutic benefit and prevent symptom relapse), and treatment of recurrent episodes of acute psychosis.

Prevention of Psychosis and Symptom Improvement

Test batteries such as the PACE (Personal Assessment and Crisis Evaluation Clinic) and COPS (Criteria of Prodromal Syndromes), which measure low-level psychotic symptoms and cognitive disturbances, are used to evaluate people with early, low-level symptoms of psychosis. Test results are combined with family history information to identify patients in the “high-risk” group; they are considered to have a 20-40% risk of progression to frank psychosis within two years. These patients are often treated with low doses of antipsychotic drugs with the goal of reducing their symptoms and preventing progression to frank psychosis. While generally useful for reducing symptoms, clinical trials to date show little evidence that early use of antipsychotics improves long-term outcomes in those with prodromal symptoms, either alone or in combination with cognitive behavioural therapy (CBT).

First Episode Psychosis

First episode psychosis (FEP), is the first time that psychotic symptoms are presented. NICE recommends that all persons presenting with first episode psychosis be treated with both an antipsychotic drug, and CBT. NICE further recommends that those expressing a preference for CBT alone are informed that combination treatment is more effective. A diagnosis of schizophrenia is not made at this time as it takes longer to determine by both DSM-5 and ICD-11, and only around 60% of those presenting with a first episode psychosis will later be diagnosed with schizophrenia.

The conversion rate for a first episode drug induced psychosis to bipolar disorder or schizophrenia are lower, with 30% of people converting to either bipolar disorder or schizophrenia. NICE makes no distinction between a substance-induced psychosis, and any other form of psychosis. The rate of conversion differs for different classes of drug.

Pharmacological options for the specific treatment of FEP have been discussed in recent reviews. The goals of treatment for FEP include reducing symptoms and potentially improving long-term treatment outcomes. Randomised clinical trials have provided evidence for the efficacy of antipsychotic drugs in achieving the former goal, with first-generation and second generation antipsychotics showing about equal efficacy. Evidence that early treatment has a favourable effect on long term outcomes is equivocal.

Recurrent Psychotic Episodes

Placebo controlled trials of both first and second generation antipsychotic drugs consistently demonstrate the superiority of active drug to placebo in suppressing psychotic symptoms. A large meta-analysis of 38 trials of antipsychotic drugs in schizophrenia acute psychotic episodes showed an effect size of about 0.5. There is little or no difference in efficacy among approved antipsychotic drugs, including both first- and second-generation agents. The efficacy of such drugs is suboptimal. Few patients achieve complete resolution of symptoms. Response rates, calculated using various cutoff values for symptom reduction, are low and their interpretation is complicated by high placebo response rates and selective publication of clinical trial results.

Maintenance Therapy

The majority of patients treated with an antipsychotic drug will experience a response within four weeks. The goals of continuing treatment are to maintain suppression of symptoms, prevent relapse, improve quality of life, and support engagement in psychosocial therapy.

Maintenance therapy with antipsychotic drugs is clearly superior to placebo in preventing relapse but is associated with weight gain, movement disorders, and high dropout rates. A 3-year trial following persons receiving maintenance therapy after an acute psychotic episode found that 33% obtained long-lasting symptom reduction, 13% achieved remission, and only 27% experienced satisfactory quality of life. The effect of relapse prevention on long term outcomes is uncertain, as historical studies show little difference in long term outcomes before and after the introduction of antipsychotic drugs.

While maintenance therapy clearly reduces the rate of relapses requiring hospitalization, a large observational study in Finland found that, in people that eventually discontinued antipsychotics, the risk of being hospitalized again for a mental health problem or dying increased the longer they were dispensed (and presumably took) antipsychotics prior to stopping therapy. If people did not stop taking antipsychotics, they remained at low risk for relapse and hospitalisation compared to those that stopped taking antipsychotics. The authors speculated that the difference may be because the people that discontinued treatment after a longer time had more severe mental illness than those that discontinued antipsychotic therapy sooner.

A significant challenge in the use of antipsychotic drugs for the prevention of relapse is the poor rate of adherence. In spite of the relatively high rates of adverse effects associated with these drugs, some evidence, including higher dropout rates in placebo arms compared to treatment arms in randomised clinical trials, suggest that most patients who discontinue treatment do so because of suboptimal efficacy. If someone experiences psychotic symptoms due to nonadherence, they may be compelled to treatment through a process called involuntary commitment, in which they can be forced to accept treatment (including antipsychotics). A person can also be committed to treatment outside of a hospital, called outpatient commitment.

Antipsychotics in long-acting injectable (LAI), or “depot”, form have been suggested as a method of decreasing medication nonadherence (sometimes also called non-compliance). NICE advises LAIs be offered to patients when preventing covert, intentional nonadherence is a clinical priority. LAIs are used to ensure adherence in outpatient commitment. A meta-analysis found that LAIs resulted in lower rates of rehospitalisation with a hazard ratio of 0.83, however these results were not statistically significant (the 95% confidence interval was 0.62 to 1.11).

Bipolar Disorder

Antipsychotics are routinely used, often in conjunction with mood stabilisers such as lithium/valproate, as a first-line treatment for manic and mixed episodes associated with bipolar disorder. The reason for this combination is the therapeutic delay of the aforementioned mood stabilisers (for valproate therapeutic effects are usually seen around five days after treatment is commenced whereas lithium usually takes at least a week before the full therapeutic effects are seen) and the comparatively rapid antimanic effects of antipsychotic drugs. The antipsychotics have a documented efficacy when used alone in acute mania/mixed episodes.

Three atypical antipsychotics (lurasidone, olanzapine and quetiapine) have also been found to possess efficacy in the treatment of bipolar depression as a monotherapy, whereas only olanzapine and quetiapine have been proven to be effective broad-spectrum (i.e. against all three types of relapse – manic, mixed and depressive) prophylactic (or maintenance) treatments in patients with bipolar disorder. A recent Cochrane review also found that olanzapine had a less favourable risk/benefit ratio than lithium as a maintenance treatment for bipolar disorder.

The American Psychiatric Association and the UK National Institute for Health and Care Excellence recommend antipsychotics for managing acute psychotic episodes in schizophrenia or bipolar disorder, and as a longer-term maintenance treatment for reducing the likelihood of further episodes. They state that response to any given antipsychotic can be variable so that trials may be necessary, and that lower doses are to be preferred where possible. A number of studies have looked at levels of “compliance” or “adherence” with antipsychotic regimes and found that discontinuation (stopping taking them) by patients is associated with higher rates of relapse, including hospitalisation.

Dementia

Psychosis and agitation develop in as many as 80 percent of people living in nursing homes. Despite a lack of Federal Drug Administration (FDA) approval and black-box warnings, atypical antipsychotics are often prescribed to people with dementia. An assessment for an underlying cause of behaviour is needed before prescribing antipsychotic medication for symptoms of dementia. Antipsychotics in old age dementia showed a modest benefit compared to placebo in managing aggression or psychosis, but this is combined with a fairly large increase in serious adverse events. Thus, antipsychotics should not be used routinely to treat dementia with aggression or psychosis, but may be an option in a few cases where there is severe distress or risk of physical harm to others. Psychosocial interventions may reduce the need for antipsychotics. In 2005, the FDA issued an advisory warning of an increased risk of death when atypical antipsychotics are used in dementia. In the subsequent 5 years, the use of atypical antipsychotics to treat dementia decreased by nearly 50%.

Major Depressive Disorder

A number of atypical antipsychotics have some benefits when used in addition to other treatments in major depressive disorder. Aripiprazole, quetiapine extended-release, and olanzapine (when used in conjunction with fluoxetine) have received FDA labelling for this indication. There is, however, a greater risk of side effects with their use compared to using traditional antidepressants. The greater risk of serious side effects with antipsychotics is why, e.g. quetiapine was denied approval as monotherapy for major depressive disorder or generalised anxiety disorder, and instead was only approved as an adjunctive treatment in combination with traditional antidepressants.

Other

Besides the above uses antipsychotics may be used for obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), personality disorders, Tourette syndrome, autism and agitation in those with dementia. Evidence however does not support the use of atypical antipsychotics in eating disorders or personality disorder. The atypical antipsychotic risperidone may be useful for OCD. The use of low doses of antipsychotics for insomnia, while common, is not recommended as there is little evidence of benefit and concerns regarding adverse effects. Low dose antipsychotics may also be used in treatment of impulse-behavioural and cognitive-perceptual symptoms of borderline personality disorder.

In children they may be used in those with disruptive behaviour disorders, mood disorders and pervasive developmental disorders or intellectual disability. Antipsychotics are only weakly recommended for Tourette syndrome, because although they are effective, side effects are common. The situation is similar for those on the autism spectrum. Much of the evidence for the off-label use of antipsychotics (for example, for dementia, OCD, PTSD, personality disorders, Tourette’s) was of insufficient scientific quality to support such use, especially as there was strong evidence of increased risks of stroke, tremors, significant weight gain, sedation, and gastrointestinal problems. A UK review of unlicensed usage in children and adolescents reported a similar mixture of findings and concerns. A survey of children with pervasive developmental disorder found that 16.5% were taking an antipsychotic drug, most commonly for irritability, aggression, and agitation. Both risperidone and aripiprazole have been approved by the FDA for the treatment of irritability in autistic children and adolescents.

Aggressive challenging behaviour in adults with intellectual disability is often treated with antipsychotic drugs despite lack of an evidence base. A recent randomised controlled trial, however, found no benefit over placebo and recommended that the use of antipsychotics in this way should no longer be regarded as an acceptable routine treatment.

Antipsychotics may be an option, together with stimulants, in people with ADHD and aggressive behaviour when other treatments have not worked. They have not been found to be useful for the prevention of delirium among those admitted to hospital.

Typicals vs Atypicals

It is unclear whether the atypical (second-generation) antipsychotics offer advantages over older, first generation antipsychotics. Amisulpride, olanzapine, risperidone and clozapine may be more effective but are associated with greater side effects. Typical antipsychotics have equal drop-out and symptom relapse rates to atypicals when used at low to moderate dosages.

Clozapine is an effective treatment for those who respond poorly to other drugs (“treatment-resistant” or “refractory” schizophrenia), but it has the potentially serious side effect of agranulocytosis (lowered white blood cell count) in less than 4% of people.

Due to bias in the research the accuracy of comparisons of atypical antipsychotics is a concern.

In 2005, a US government body, the National Institute of Mental Health published the results of a major independent study (the CATIE project). No other atypical studied (risperidone, quetiapine, and ziprasidone) did better than the typical perphenazine on the measures used, nor did they produce fewer adverse effects than the typical antipsychotic perphenazine, although more patients discontinued perphenazine owing to extrapyramidal effects compared to the atypical agents (8% vs. 2% to 4%).

Atypical antipsychotics do not appear to lead to improved rates of medication adherence compared to typical antipsychotics.

Many researchers question the first-line prescribing of atypicals over typicals, and some even question the distinction between the two classes. In contrast, other researchers point to the significantly higher risk of tardive dyskinesia and other extrapyramidal symptoms with the typicals and for this reason alone recommend first-line treatment with the atypicals, notwithstanding a greater propensity for metabolic adverse effects in the latter. NICE recently revised its recommendation favouring atypicals, to advise that the choice should be an individual one based on the particular profiles of the individual drug and on the patient’s preferences.

The re-evaluation of the evidence has not necessarily slowed the bias toward prescribing the atypical

Adverse Effects

Generally, more than one antipsychotic drug should not be used at a time because of increased adverse effects.

Very rarely antipsychotics may cause tardive psychosis.

By Rate

Common (≥ 1% and up to 50% incidence for most antipsychotic drugs) adverse effects of antipsychotics include:

  • Sedation (particularly common with asenapine, clozapine, olanzapine, quetiapine, chlorpromazine and zotepine).
  • Headaches.
  • Dizziness.
  • Diarrhoea.
  • Anxiety.
  • Extrapyramidal side effects (particularly common with first-generation antipsychotics), which include:
    • Akathisia, an often distressing sense of inner restlessness.
    • Dystonia, an abnormal muscle contraction.
    • Pseudoparkinsonism, symptoms that are similar to what people with Parkinson’s disease experience, including tremulousness and drooling.
  • Hyperprolactinaemia (rare for those treated with clozapine, quetiapine and aripiprazole), which can cause:
    • Galactorrhoea, the unusual secretion of breast milk.
    • Gynaecomastia, abnormal growth of breast tissue.
    • Sexual dysfunction (in both sexes).
    • Osteoporosis.
  • Orthostatic hypotension.
  • Weight gain (particularly prominent with clozapine, olanzapine, quetiapine and zotepine).
  • Anticholinergic side-effects (common for olanzapine, clozapine; less likely on risperidone) such as:
    • Blurred vision.
    • Constipation.
    • Dry mouth (although hypersalivation may also occur).
    • Reduced perspiration.
  • Tardive dyskinesia appears to be more frequent with high-potency first-generation antipsychotics, such as haloperidol, and tends to appear after chronic and not acute treatment. It is characterised by slow (hence the tardive) repetitive, involuntary and purposeless movements, most often of the face, lips, legs, or torso, which tend to resist treatment and are frequently irreversible. The rate of appearance of TD is about 5% per year of use of antipsychotic drug (whatever the drug used).

Rare/Uncommon (<1% incidence for most antipsychotic drugs) adverse effects of antipsychotics include:

  • Blood dyscrasias (e.g., agranulocytosis, leukopenia, and neutropoenia), which is more common in patients on clozapine.
  • Metabolic syndrome and other metabolic problems such as type II diabetes mellitus – particularly common with clozapine, olanzapine and zotepine. In American studies African Americans appeared to be at a heightened risk for developing type II diabetes mellitus. Evidence suggests that females are more sensitive to the metabolic side effects of first-generation antipsychotic drugs than males. Metabolic adverse effects appear to be mediated by the following mechanisms:
    • Causing weight gain by antagonising the histamine H1 and serotonin 5-HT2Creceptors] and perhaps by interacting with other neurochemical pathways in the central nervous system.
  • Neuroleptic malignant syndrome, a potentially fatal condition characterised by:
    • Autonomic instability, which can manifest with tachycardia, nausea, vomiting, diaphoresis, etc.
    • Hyperthermia – elevated body temperature.
    • Mental status change (confusion, hallucinations, coma, etc.).
    • Muscle rigidity.
    • Laboratory abnormalities (e.g. elevated creatine kinase, reduced iron plasma levels, electrolyte abnormalities, etc.).
  • Pancreatitis.
  • QT interval prolongation – more prominent in those treated with amisulpride, pimozide, sertindole, thioridazine and ziprasidone.
  • Torsades de pointes.
  • Seizures, particularly in people treated with chlorpromazine and clozapine.
  • Thromboembolism.
  • Myocardial infarction.
  • Stroke.

Long-Term Effects

Some studies have found decreased life expectancy associated with the use of antipsychotics, and argued that more studies are needed. Antipsychotics may also increase the risk of early death in individuals with dementia. Antipsychotics typically worsen symptoms in people who suffer from depersonalisation disorder. Antipsychotic polypharmacy (prescribing two or more antipsychotics at the same time for an individual) is a common practice but not evidence-based or recommended, and there are initiatives to curtail it. Similarly, the use of excessively high doses (often the result of polypharmacy) continues despite clinical guidelines and evidence indicating that it is usually no more effective but is usually more harmful.

Loss of grey matter and other brain structural changes over time are observed amongst people diagnosed with schizophrenia. Meta-analyses of the effects of antipsychotic treatment on grey matter volume and the brain’s structure have reached conflicting conclusions. A 2012 meta-analysis concluded that grey matter loss is greater in patients treated with first generation antipsychotics relative to those treated with atypicals, and hypothesized a protective effect of atypicals as one possible explanation. A second meta-analysis suggested that treatment with antipsychotics was associated with increased grey matter loss. Animal studies found that monkeys exposed to both first- and second-generation antipsychotics experience significant reduction in brain volume, resulting in an 8-11% reduction in brain volume over a 17-27 month period.

Subtle, long-lasting forms of akathisia are often overlooked or confused with post-psychotic depression, in particular when they lack the extrapyramidal aspect that psychiatrists have been taught to expect when looking for signs of akathisia.

Adverse effect on cognitive function and increased risk of death in people with dementia along with worsening of symptoms has been describe in the literature.

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in recurrence of the condition that is being treated. Rarely tardive dyskinesia can occur when the medication is stopped.

Unexpected psychotic episodes have been observed in patients withdrawing from clozapine. This is referred to as supersensitivity psychosis, not to be equated with tardive dyskinesia.

Tardive dyskinesia may abate during withdrawal from the antipsychotic agent, or it may persist.

Withdrawal effects may also occur when switching a person from one antipsychotic to another, (it is presumed due to variations of potency and receptor activity). Such withdrawal effects can include cholinergic rebound, an activation syndrome, and motor syndromes including dyskinesias. These adverse effects are more likely during rapid changes between antipsychotic agents, so making a gradual change between antipsychotics minimises these withdrawal effects. The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotic treatment to avoid acute withdrawal syndrome or rapid relapse. The process of cross-titration involves gradually increasing the dose of the new medication while gradually decreasing the dose of the old medication.

City and Hackney Clinical Commissioning Group found more than 1,000 patients in their area in July 2019 who had not had regular medication reviews or health checks because they were not registered as having serious mental illness. On average they had been taking these drugs for six years. If this is typical of practice in England more than 100,000 patients are probably in the same position.

List of Agents

Clinically used antipsychotic medications are listed below by drug group. Trade names appear in parentheses. A 2013 review has stated that the division of antipsychotics into first and second generation is perhaps not accurate.

Notes:

  • † indicates drugs that are no longer (or were never) marketed in English-speaking countries.
  • ‡ denotes drugs that are no longer (or were never to begin with) marketed in the United States. Some antipsychotics are not firmly placed in either first-generation or second-generation classes.
  • # denotes drugs that have been withdrawn worldwide.

First-Generation (Typical)

  • Butyrophenones:
    • Benperidol‡
    • Bromperidol†
    • Droperidol‡
    • Haloperidol
    • Moperone (discontinued)†
    • Pipamperone (discontinued)†
    • Timiperone †
  • Diphenylbutylpiperidines:
    • Fluspirilene ‡
    • Penfluridol ‡
    • Pimozide
  • Phenothiazines:
    • Acepromazine † – although it is mostly used in veterinary medicine.
    • Chlorpromazine
    • Cyamemazine †
    • Dixyrazine †
    • Fluphenazine
    • Levomepromazine‡
    • Mesoridazine (discontinued)†
    • Perazine
    • Pericyazine‡
    • Perphenazine
    • Pipotiazine ‡
    • Prochlorperazine
    • Promazine (discontinued)
    • Promethazine
    • Prothipendyl †
    • Thioproperazine‡ (only English-speaking country it is available in is Canada)
    • Thioridazine (discontinued)
    • Trifluoperazine
    • Triflupromazine (discontinued)†
  • Thioxanthenes:
    • Chlorprothixene †
    • Clopenthixol
    • Flupentixol ‡
    • Thiothixene
    • Zuclopenthixol ‡

Disputed/Unknown

This category is for drugs that have been called both first and second-generation, depending on the literature being used.

  • Benzamides:
    • Sulpiride ‡
    • Sultopride †
    • Veralipride †
  • Tricyclics:
    • Carpipramine †
    • Clocapramine †
    • Clorotepine †
    • Clotiapine ‡
    • Loxapine
    • Mosapramine †
  • Others:
    • Molindone #

Second-Generation (Atypical)

  • Benzamides:
    • Amisulpride ‡ – Selective dopamine antagonist. Higher doses (greater than 400 mg) act upon post-synaptic dopamine receptors resulting in a reduction in the positive symptoms of schizophrenia, such as psychosis. Lower doses, however, act upon dopamine autoreceptors, resulting in increased dopamine transmission, improving the negative symptoms of schizophrenia. Lower doses of amisulpride have also been shown to have antidepressant and anxiolytic effects in non-schizophrenic patients, leading to its use in dysthymia and social phobias.
    • Nemonapride † – Used in Japan.
    • Remoxipride # – Has a risk of causing aplastic anaemia and, hence, has been withdrawn from the market worldwide. It has also been found to possess relatively low (virtually absent) potential to induce hyperprolactinaemia and extrapyramidal symptoms, likely attributable to its comparatively weak binding to (and, hence, rapid dissociation from) the D2 receptor.
    • Sultopride – An atypical antipsychotic of the benzamide chemical class used in Europe, Japan, and Hong Kong for the treatment of schizophrenia. It was launched by Sanofi-Aventis in 1976. Sultopride acts as a selective D2 and D3 receptor antagonist.
  • Benzisoxazoles/benzisothiazoles:
    • Iloperidone – Approved by the FDA in 2009, it is fairly well tolerated, although hypotension, dizziness, and somnolence were very common side effects. Has not received regulatory approval in other countries, however.
    • Lurasidone – Approved by the FDA for schizophrenia and bipolar depression, and for use as schizophrenia treatment in Canada.
    • Paliperidone – Primary, active metabolite of risperidone that was approved in 2006.
    • Paliperidone palmitate – Long-acting version of paliperidone for once-monthly injection.
    • Perospirone † – Has a higher incidence of extrapyramidal side effects than other atypical antipsychotics.
    • Risperidone – Divided dosing is recommended until initial titration is completed, at which time the drug can be administered once daily. Used off-label to treat Tourette syndrome and anxiety disorder.
    • Ziprasidone – Approved in 2004 to treat bipolar disorder. Side-effects include a prolonged QT interval in the heart, which can be dangerous for patients with heart disease or those taking other drugs that prolong the QT interval.
  • Butyrophenones:
    • Melperone † – Only used in a few European countries. No English-speaking country has licensed it to date.
    • Lumateperone.
  • Phenylpiperazines/quinolinones:
    • Aripiprazole – Partial agonist at the D2 receptor unlike almost all other clinically-utilized antipsychotics.
    • Aripiprazole lauroxil – Long-acting version of aripiprazole for injection.
    • Brexpiprazole – Partial agonist of the D2 receptor. Successor of aripiprazole.
    • Cariprazine – A D3-preferring D2/D3 partial agonist.
  • Tricyclics:
    • Asenapine – Used for the treatment of schizophrenia and acute mania associated with bipolar disorder.
    • Clozapine – Requires routine laboratory monitoring of complete blood counts every one to four weeks due to the risk of agranulocytosis. It has unparalleled efficacy in the treatment of treatment-resistant schizophrenia.
    • Olanzapine – Used to treat psychotic disorders including schizophrenia, acute manic episodes, and maintenance of bipolar disorder. Used as an adjunct to antidepressant therapy, either alone or in combination with fluoxetine as Symbyax.
    • Quetiapine – Used primarily to treat bipolar disorder and schizophrenia. Also used and licensed in a few countries (including Australia, the United Kingdom and the United States) as an adjunct to antidepressant therapy in patients with major depressive disorder. It is the only antipsychotic that has demonstrated efficacy as a monotherapy for the treatment of major depressive disorder. It indirectly serves as a norepinephrine reuptake inhibitor by means of its active metabolite, norquetiapine.
    • Zotepine – An atypical antipsychotic indicated for acute and chronic schizophrenia. It is still used in Japan and was once used in Germany but it was discontinued.†
  • Others:
    • Blonanserin – Approved by the PMDA in 2008. Used in Japan and South Korea.
    • Pimavanserin – A selective 5-HT2A receptor antagonist approved for the treatment of Parkinson’s disease psychosis in 2016.
    • Sertindole ‡ – Developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it is believed to have antagonist activity at dopamine and serotonin receptors in the brain.

Mechanism of Action

Antipsychotic drugs such as haloperidol and chlorpromazine tend to block dopamine D2 receptors in the dopaminergic pathways of the brain. This means that dopamine released in these pathways has less effect. Excess release of dopamine in the mesolimbic pathway has been linked to psychotic experiences. Decreased dopamine release in the prefrontal cortex, and excess dopamine release in other pathways, are associated with psychotic episodes in schizophrenia and bipolar disorder. In addition to the antagonistic effects of dopamine, antipsychotics (in particular atypical neuroleptics) also antagonise 5-HT2A receptors. Different alleles of the 5-HT2A receptor have been associated with schizophrenia and other psychoses, including depression. Higher concentrations of 5-HT2A receptors in cortical and subcortical areas, in particular in the right caudate nucleus have been historically recorded.

Typical antipsychotics are not particularly selective and also block dopamine receptors in the mesocortical pathway, tuberoinfundibular pathway, and the nigrostriatal pathway. Blocking D2 receptors in these other pathways is thought to produce some unwanted side effects that the typical antipsychotics can produce (see above). They were commonly classified on a spectrum of low potency to high potency, where potency referred to the ability of the drug to bind to dopamine receptors, and not to the effectiveness of the drug. High-potency antipsychotics such as haloperidol, in general, have doses of a few milligrams and cause less sleepiness and calming effects than low-potency antipsychotics such as chlorpromazine and thioridazine, which have dosages of several hundred milligrams. The latter have a greater degree of anticholinergic and antihistaminergic activity, which can counteract dopamine-related side-effects.

Atypical antipsychotic drugs have a similar blocking effect on D2 receptors; however, most also act on serotonin receptors, especially 5-HT2A and 5-HT2C receptors. Both clozapine and quetiapine appear to bind just long enough to elicit antipsychotic effects but not long enough to induce extrapyramidal side effects and prolactin hypersecretion. 5-HT2A antagonism increases dopaminergic activity in the nigrostriatal pathway, leading to a lowered extrapyramidal side effect liability among the atypical antipsychotics.

Society and Culture

Terminology

The term major tranquiliser was used for older antipsychotic drugs. The term neuroleptic is often used as a synonym for antipsychotic, even though – strictly speaking – the two terms are not interchangeable. Antipsychotic drugs are a subgroup of neuroleptic drugs, because the latter have a wider range of effects.

Antipsychotics are a type of psychoactive or psychotropic medication.

Sales

Antipsychotics were once among the biggest selling and most profitable of all drugs, generating $22 billion in global sales in 2008. By 2003 in the US, an estimated 3.21 million patients received antipsychotics, worth an estimated $2.82 billion. Over 2/3 of prescriptions were for the newer, more expensive atypicals, each costing on average $164 per year, compared to $40 for the older types. By 2008, sales in the US reached $14.6 billion, the biggest selling drugs in the US by therapeutic class.

Overprescription

Antipsychotics in the nursing home population are often overprescribed, often for the purposes of making it easier to handle dementia patients. Federal efforts to reduce the use of antipsychotics in US nursing homes has led to a nationwide decrease in their usage in 2012.

Legal

Antipsychotics are sometimes administered as part of compulsory psychiatric treatment via inpatient (hospital) commitment or outpatient commitment.

Formulations

They may be administered orally or, in some cases, through long-acting (depot) injections administered in the dorsgluteal, ventrogluteal or deltoid muscle. Short-acting parenteral formulations also exist, which are generally reserved for emergencies or when oral administration is otherwise impossible. The oral formulations include immediate release, extended release, and orally disintegrating products (which are not sublingual, and can help ensure that medications are swallowed instead of “cheeked”). Sublingual products (e.g. asenapine) also exist, which must be held under the tongue for absorption. The first transdermal formulation of an antipsychotic (transdermal asenapine, marketed as Secuado), was FDA-approved in 2019.

Recreational Use

Certain second-generation antipsychotics are misused or abused for their sedative, tranquilising, and (paradoxically) “hallucinogenic” effects. The most commonly second-generation antipsychotic implicated is quetiapine. In case reports, quetiapine has been abused in doses taken by mouth (which is how the drug is available from the manufacturer), but also crushed and insufflated or mixed with water for injection into a vein. Olanzapine, another sedating second-generation antipsychotic, has also been misused for similar reasons. There is no standard treatment for antipsychotic abuse, though switching to a second-generation antipsychotic with less abuse potential (e.g. aripiprazole) has been used.

Controversy

Joanna Moncrieff has argued that antipsychotic drug treatment is often undertaken as a means of control rather than to treat specific symptoms experienced by the patient.

Use of this class of drugs has a history of criticism in residential care. As the drugs used can make patients calmer and more compliant, critics claim that the drugs can be overused. Outside doctors can feel under pressure from care home staff. In an official review commissioned by UK government ministers it was reported that the needless use of antipsychotic medication in dementia care was widespread and was linked to 1800 deaths per year. In the US, the government has initiated legal action against the pharmaceutical company Johnson & Johnson for allegedly paying kickbacks to Omnicare to promote its antipsychotic risperidone (Risperdal) in nursing homes.

There has also been controversy about the role of pharmaceutical companies in marketing and promoting antipsychotics, including allegations of downplaying or covering up adverse effects, expanding the number of conditions or illegally promoting off-label usage; influencing drug trials (or their publication) to try to show that the expensive and profitable newer atypicals were superior to the older cheaper typicals that were out of patent. Following charges of illegal marketing, settlements by two large pharmaceutical companies in the US set records for the largest criminal fines ever imposed on corporations. One case involved Eli Lilly and Company’s antipsychotic Zyprexa, and the other involved Bextra. In the Bextra case, the government also charged Pfizer with illegally marketing another antipsychotic, Geodon. In addition, Astrazeneca faces numerous personal-injury lawsuits from former users of Seroquel (quetiapine), amidst federal investigations of its marketing practices. By expanding the conditions for which they were indicated, Astrazeneca’s Seroquel and Eli Lilly’s Zyprexa had become the biggest selling antipsychotics in 2008 with global sales of $5.5 billion and $5.4 billion respectively.

Harvard medical professor Joseph Biederman conducted research on bipolar disorder in children that led to an increase in such diagnoses. A 2008 Senate investigation found that Biederman also received $1.6 million in speaking and consulting fees between 2000 and 2007 – some of them undisclosed to Harvard – from companies including makers of antipsychotic drugs prescribed for children with bipolar disorder. Johnson & Johnson gave more than $700,000 to a research centre that was headed by Biederman from 2002 to 2005, where research was conducted, in part, on Risperdal, the company’s antipsychotic drug. Biederman has responded saying that the money did not influence him and that he did not promote a specific diagnosis or treatment.

Pharmaceutical companies have also been accused of attempting to set the mental health agenda through activities such as funding consumer advocacy groups.

Special Populations

It is recommended that persons with dementia who exhibit behavioural and psychological symptoms should not be given antipsychotics before trying other treatments. When taking antipsychotics this population has increased risk of cerebrovascular effects, parkinsonism or extrapyramidal symptoms, sedation, confusion and other cognitive adverse effects, weight gain, and increased mortality. Physicians and caretakers of persons with dementia should try to address symptoms including agitation, aggression, apathy, anxiety, depression, irritability, and psychosis with alternative treatments whenever antipsychotic use can be replaced or reduced. Elderly persons often have their dementia treated first with antipsychotics and this is not the best management strategy.

Book: Wrestling With My Thoughts: A Doctor With Severe Mental Illness Discovers Strength

Book Title:

Wrestling With My Thoughts: A Doctor With Severe Mental Illness Discovers Strength.

Author(s): Sharon Hastings.

Year: 2020.

Edition: First (1st).

Publisher: IVP.

Type(s): Paperback and Kindle.

Synopsis:

She couldn’t believe it. There she was with her medical qualifications sitting on the floor of a mental hospital. She’d offered her life to God, wanted to serve him anywhere, but no, surely not this… Sharon Hastings is absolutely passionate about helping anyone who suffers from ‘severe and enduring mental illness’ (SEMI): schizophrenia, bipolar disorder and schizoaffective disorder. She wants the church to know all about these illnesses: how they devastate ordinary people and how they need to be treated. By telling her story, warts and all, showing her own tortuous, painful journey, she equips us to come alongside loved ones, fellow church members, friends and neighbours, understanding the social and spiritual ramifications of their illnesses, including them in our activities (where appropriate) and encouraging their spiritual growth. A natural storyteller, the author draws us in. We journey with her. With wisdom, kindness and the heart of a bruised survivor, she interweaves her exceptional story with vital teaching which simply cannot be ignored by anyone within the church today.

What is Melancholic Depression?

Introduction

Melancholic depression, or depression with melancholic features, is a DSM-IV and DSM-5 subtype of clinical depression.

Refer to Melancholia.

Signs and Symptoms

Requiring at least one of the following symptoms:

  • Anhedonia (the inability to find pleasure in positive things).
  • Lack of mood reactivity (i.e. mood does not improve in response to positive events).

And at least three of the following:

  • Depression that is subjectively different from grief or loss.
  • Severe weight loss or loss of appetite.
  • Psychomotor agitation or retardation.
  • Early morning awakening.
  • Guilt that is excessive.
  • Worse mood in the morning.

Melancholic features apply to an episode of depression that occurs as part of either major depressive disorder or bipolar disorder I or II.

Causes

The causes of melancholic-type major depressive disorder are believed to be mostly biological factors; some may have inherited the disorder from their parents. Sometimes stressful situations can trigger episodes of melancholic depression, though this is a contributing cause rather than a necessary or sufficient cause. People with psychotic symptoms are also thought to be more susceptible to this disorder. It is frequent in old age and often unnoticed by some physicians who perceive the symptoms to be a part of dementia. Major depressive disorder, melancholic or otherwise, is a separate condition that can be comorbid with dementia in the elderly.

Treatment

Melancholic depression is often considered to be a biologically based and particularly severe form of depression. Treatment involves antidepressants, electroconvulsive therapy, or other empirically supported treatments such as cognitive behavioural therapy and interpersonal therapy for depression. A 2008 analysis of a large study of patients with unipolar major depression found a rate of 23.5% for melancholic features. It was the first form of depression extensively studied, and many of the early symptom checklists for depression reflect this.

Incidence

The incidence of melancholic depression has been found to increase when the temperature and/or sunlight are low. According to the DSM-IV, the “melancholic features” specifier may be applied to the following only:

  • Major depressive episode, single episode.
  • Major depressive episode, recurrent episode.
  • Bipolar I disorder, most recent episode depressed.
  • Bipolar II disorder, most recent episode depressed.

Book: Emotion Efficacy Therapy

Book Title:

Emotion Efficacy Therapy: A Brief, Exposure-Based Treatment for Emotion Regulation Integrating ACT and DBT.

Author(s): Matthew McKay (PhD) and Aprilia West (PSyD, MT).

Year: 2016.

Edition: First (1st).

Publisher: New Harbinger.

Type(s): Paperback and Kindle.

Synopsis:

If you treat clients with emotion regulation disorders – including depression, anxiety, post-traumatic stress disorder (PTSD), bipolar disorder, and borderline personality disorder (BPD) – you know how important it is for these clients to take control of their emotions and choose their actions in accordance with their values. To help, emotion efficacy therapy (EET) provides a new, theoretically-driven, contextually-based treatment that integrates components from acceptance and commitment therapy (ACT) and dialectical behaviour therapy (DBT) into an exposure-based protocol. In doing so, EET targets the transdiagnostic drivers of experiential avoidance and distress intolerance to increase emotional efficacy.

This step-by-step manual will show you how to help your clients confront and accept their pain, and learn to apply new adaptive responses to emotional triggers. Using a brief treatment that lasts as little as eight weeks, you will be able to help your clients understand and develop a new relationship with their emotions, learn how to have mastery over their emotional experience, practice values-based action in the midst of being emotionally triggered, and stop intense emotions from getting in the way of creating the life they want.

Using the transdiagnostic, exposure-based approach in this book, you can help your clients manage difficult emotions, curb negative reactions, and start living a better life. This book is a game changer for emotion exposure treatment!

Mad World (2016)

Introduction

Mad World (Cantonese: 一念無明) is a 2016 Hong Kong drama film directed by Wong Chun and starring Shawn Yue, Eric Tsang, Elaine Jin and Charmaine Fong.

Outline

Tung, a former financial analyst who is struggling with bipolar disorder, is placed in the custody of his truck-driver father after being dismissed from a mental health institution.

Cast

  • Shawn Yue as Tung.
  • Eric Tsang as Tung’s father.
  • Elaine Jin as Tung’s mother.
  • Charmaine Fong as Jenny.

Trivia

  • It is Wong’s directorial debut after winning the First Feature Film Initiative.
  • It was selected as the Hong Kong entry for the Best Foreign Language Film at the 90th Academy Awards, but it was not nominated.

Production & Filming Details

  • Director(s): Wong Chun.
  • Producer(s): Derek Chiu and Heiward Mak.
  • Writer(s): Florence Chan.
  • Music: Yusuke Hatano.
  • Cinematography: Zhang Ying.
  • Editor(s): Wong Chun.
  • Production: Mad World Limited.
  • Distributor(s): Golden Scene.
  • Release Date: 08 September 2016 (Toronto International Film Festival) and 30 March 2017 (Hong Kong).
  • Running Time: 101 minutes.
  • Rating: Unknown.
  • Country: Hong Kong.
  • Language: Cantonese.

Video Link