What is Nordazepam?

Introduction

Nordazepam (INN; marketed under brand names Nordaz, Stilny, Madar, Vegesan, and Calmday; also known as nordiazepam, desoxydemoxepam, and desmethyldiazepam) is a 1,4-benzodiazepine derivative. Like other benzodiazepine derivatives, it has amnesic, anticonvulsant, anxiolytic, muscle relaxant, and sedative properties. However, it is used primarily in the treatment of anxiety disorders. It is an active metabolite of diazepam, chlordiazepoxide, clorazepate, prazepam, pinazepam, and medazepam.

Nordazepam is among the longest lasting (longest half-life) benzodiazepines, and its occurrence as a metabolite is responsible for most cumulative side-effects of its myriad of pro-drugs when they are used repeatedly at moderate-high doses; the nordazepam metabolite oxazepam is also active (and is a more potent, full benzodiazepine-site agonist), which contributes to nordazepam cumulative side-effects but occur too minutely to contribute to the cumulative side-effects of nordazepam pro-drugs (except when they are abused chronically in extremely supra-therapeutic doses).

Side effects

Common side effects of nordazepam include somnolence, which is more common in elderly patients and/or people on high-dose regimens. Hypotonia, which is much less common, is also associated with high doses and/or old age.

Contraindications and Special Caution

Benzodiazepines require special precaution if used in the elderly, during pregnancy, in children, alcohol- or drug-dependent individuals, and individuals with comorbid psychiatric disorders. As with many other drugs, changes in liver function associated with aging or diseases such as cirrhosis, may lead to impaired clearance of nordazepam.

Pharmacology

Nordazepam is a partial agonist at the GABAA receptor, which makes it less potent than other benzodiazepines, particularly in its amnesic and muscle-relaxing effects. Its elimination half life is between 36 and 200 hours, with wide variation among individuals; factors such as age and gender are known to impact it. The variation of reported half-lives are attributed to differences in nordazepam metabolism and that of its metabolites as nordazepam is hydroxylated to active metabolites such as oxazepam, before finally being glucuronidated and excreted in the urine. This can be attributed to extremely variable hepatic and renal metabolic functions among individuals depending upon a number of factors (including age, ethnicity, disease, and current or previous use/abuse of other drugs/medicines).

Pregnancy and Nursing Mothers

Nordazepam, like other benzodiazepines, easily crosses the placental barrier, so the drug should not be administered during the first trimester of pregnancy. In case of serious medical reasons, nordazepam can be given in late pregnancy, but the foetus, due to the pharmacological action of the drug, may experience side effects such as hypothermia, hypotonia, and sometimes mild respiratory depression. Since nordazepam and other benzodiazepines are excreted in breast milk, the substance should not be administered to mothers who are breastfeeding. Discontinuing of breast-feeding is indicated for regular intake by the mother.

Recreational Use

Refer to Benzodiazepine Use Disorder.

Nordazepam and other sedative-hypnotic drugs are detected frequently in cases of people suspected of driving under the influence of drugs. Many drivers have blood levels far exceeding the therapeutic dose range, suggesting benzodiazepines are commonly used in doses higher than the recommended doses.

What is Fosazepam?

Introduction

Fosazepam is a drug which is a benzodiazepine derivative; it is a water soluble derivative of diazepam. It has sedative and anxiolytic effects, and is a derivative of diazepam which has been substituted with a dimethylphosphoryl group to improve solubility in water.

Background

Fosazepam has similar effects on sleep as other benzodiazepines. In a clinical trial it was reported that fosazepam to lead to increased sleep duration with less broken sleep but sleep quality was worsened with suppressed deep sleep and increased light sleep. Adverse effects included feelings of impaired morning vitality and upon discontinuing the drug benzodiazepine withdrawal symptoms of anxiety, impaired concentration and impaired morning vitality were experienced. Another clinical trial also found worsening of sleep while on benzodiazepines as well as during withdrawal with suppression of deep sleep stages including REM (rapid eye movement) sleep, with increased light sleep upon withdrawal. The main metabolites of fosazepam are 3-hydroxyfosazepam and the active metabolite desmethyldiazepam which has a very long elimination half-life of about 3 days. Tolerance to the hypnotic effects of fosazepam starts to develop after about 7 days of use. Due to the very long elimination half-life of the active metabolite of fosazepam it is not recommended for use as a hypnotic. The main pharmacological effects of fosazepam may be due to its metabolite nordiazepam (desmethyldiazepam), rather than the parent drug. The long-acting active metabolite nordazepam (refer to nordiazepam) can cause extended sedative effects at high doses or with prolonged use, and may produce residual sedation upon awakening.

Fosazepam is of relatively low potency compared to other benzodiazepine derivatives, with a 100 mg dose of fosazepam equivalent to 10 mg of nitrazepam. 60 mg of fosazepam has also been estimated to be equivalent to about 5-10 mg of diazepam. Fosazepam has similar effects to nitrazepam, but with a shorter duration of action and less tendency to cause over sedation, motor-impairment, amnesia, rebound insomnia, and morning grogginess.

What is Flutoprazepam?

Introduction

Flutoprazepam (Restas) is a drug which is a benzodiazepine.

It was patented in Japan by Sumitomo in 1972 and its medical use remains mostly confined to that country. Its muscle relaxant properties are approximately equivalent to those of diazepam – however, it has more powerful sedative, hypnotic, anxiolytic and anticonvulsant effects and is around four times more potent by weight compared to diazepam. It is longer acting than diazepam due to its long-acting active metabolites, which contribute significantly to its effects. Its principal active metabolite is n-desalkylflurazepam, also known as norflurazepam, which is also a principal metabolite of flurazepam (trade name Dalmane).

Flutoprazepam is typically used for the treatment of severe insomnia and may also be used for treating stomach ulcers.

Flutoprazepam does not fall under the international Convention on Psychotropic Substances of 1971, and is currently unscheduled in the United States.

  • In Singapore, flutoprazepam is a Class C-Schedule II drug under the Misuse of Drugs Act.
  • In Thailand, flutoprazepam is a Schedule III psychotropic substance.
  • In Hong Kong, flutoprazepam is regulated under Schedule 1 of Hong Kong’s Chapter 134 Dangerous Drugs Ordinance.
    • Flutoprazepam can only be used legally by health professionals and for university research purposes.
    • The substance can be given by pharmacists under a prescription.
    • Anyone who supplies the substance without prescription can be fined $10000 (HKD).
    • The penalty for trafficking or manufacturing the substance is a $5,000,000 (HKD) fine and life imprisonment.
    • Possession of the substance for consumption without license from the Department of Health is illegal with a $1,000,000 (HKD) fine and/or 7 years of jail time.

What is Fludiazepam?

Introduction

Fludiazepam, marketed under the brand name Erispan, is a potent benzodiazepine and 2ʹ-fluoro derivative of diazepam.

Refer to Difludiazepam.

Background

It was originally developed by Hoffman-La Roche in the 1960s.

It is marketed in Japan and Taiwan. It exerts its pharmacological properties via enhancement of GABAergic inhibition.

Fludiazepam has 4 times more binding affinity for benzodiazepine receptors than diazepam. It possesses anxiolytic, anticonvulsant, sedative, hypnotic and skeletal muscle relaxant properties. Fludiazepam has been used recreationally.

What is Diclazepam?

Introduction

Diclazepam (Ro5-3448), also known as chlorodiazepam and 2′-chloro-diazepam, is a benzodiazepine and functional analogue of diazepam.

It was first synthesized by Leo Sternbach and his team at Hoffman-La Roche in 1960. It is not currently approved for use as a medication, but rather sold as an unscheduled substance. Efficacy and safety have not been tested in humans.

In animal models, its effects are similar to diazepam, possessing long-acting anxiolytic, anticonvulsant, hypnotic, sedative, skeletal muscle relaxant, and amnestic properties.

Metabolism

Metabolism of this compound has been assessed, revealing diclazepam has an approximate elimination half-life of 42 hours and undergoes N-demethylation to delorazepam, which can be detected in urine for 6 days following administration of the parent compound. Other metabolites detected were lorazepam and lormetazepam which were detectable in urine for 19 and 11 days, respectively, indicating hydroxylation by cytochrome P450 enzymes occurring concurrently with N-demethylation.

United Kingdom

In the UK, diclazepam has been classified as a Class C drug by the May 2017 amendment to The Misuse of Drugs Act 1971 along with several other benzodiazepine drugs.

What is Nimetazepam?

Introduction

Not to be confused with Nitrazepam or Nitemazepam.

Nimetazepam (marketed under brand name Erimin and Lavol) is an intermediate-acting hypnotic drug which is a benzodiazepine derivative. It was first synthesized by a team at Hoffmann-La Roche in 1964. It possesses powerful hypnotic, anxiolytic, sedative, and skeletal muscle relaxant properties. Nimetazepam is also a particularly potent anticonvulsant. It is marketed in 5 mg tablets known as Erimin, which is the brand name manufactured and marketed by the large Japanese corporation Sumitomo. Japan is the sole manufacturer of nimetazepam in the world. Outside of Japan, Erimin is available in much of East and Southeast Asia and was widely prescribed for the short-term treatment of severe insomnia in patients who have difficulty falling asleep or maintaining sleep. Sumitomo has ceased manufacturing Erimin since November 2015. It is still available as a generic drug or as Lavol.

Nimetazepam was widely prescribed in the 1980s and 1990s, particularly in Japan, Malaysia, Brunei, the Philippines, Thailand, Indonesia, Hong Kong and Singapore. Prescriptions for the drug have decreased dramatically since 2005 due to rampant misuse and addiction. It is primarily used as an anticonvulsant in . It is also still used in the most severe and debilitating cases of insomnia in an inpatient setting or in short term outpatient treatment. Hypnotic benzodiazepines estazolam and nitrazepam are used more frequently than nimetazepam for this purpose. Antidepressants such as trazodone and mirtazapine or Z-drugs like zopiclone and zolpidem are first line treatment for insomnia.

Although prescriptions for nimetazepam have decreased, abuse of the drug is still significant in Brunei, Singapore, Malaysia, and the Philippines. It is commonly used in combination with methamphetamine and MDMA (Ecstasy) and opiates (especially heroin or morphine). The strict legal restrictions nimetazepam is subject to in Malaysia has made the drug scarce, but many pills sold as nimetazepam in the black market are counterfeit. Diazepam and nitrazepam are among the most commonly prescribed benzodiazepines in the region, and as a result, they are commonly diverted and sold on the black market, often as nimetazepam.

Illicit manufacturing of nimetazepam (sold as Erimin-5) is prevalent in the region. Abuse of nimetazepam continued to rise throughout the 2010s. Seizures of illicitly manufactured Erimin-5 tablets paralleled the seizures of methamphetamine seizures in Malaysia. A small seizure of 46 illicit Erimin-5 tablets were tested for their physical and chemical characteristics. The active ingredient, adulterant, major diluent, and dyes make up the chemical characteristics of a tablet. The results indicated that nimetazepam was the most common active ingredient in the vast majority of the tablets seized. Lactose was detected as a major diluent in the majority of the samples, followed by mannitol and then calcium phosphate dibasic dihydrate. Sunset yellow was found in most of the tablet samples either alone or in combination with other dyes such as tartrazine and ponceau 4R to give the tablets a peach/orange colour. Green tablets in the samples contained brilliant blue and tartrazine dyes. Diazepam, which is primarily an anxiolytic, was the active ingredient in only one tablet out of the 46. Nitrazepam, a powerful sedative-hypnotic, which is also nimetazepams parent drug, was found to be a minor compound together with a caffeine as a major compound in three of the tablets.

In 2003, 94,200 Erimin-5 tablets were seized in Singapore. The Central Narcotics Bureau’s (CNB) laboratory tested the tablets with results that confirmed the tablets were indeed nimetazepam.

Pharmacokinetics

Taken orally, Nimetazepam has very good bioavailability with nearly 100% being absorbed from the gut. It is among the most rapidly absorbed and quickest acting oral benzodiazepines, and hypnotic effects are typically felt within 15-30 minutes after oral ingestion. The blood level decline of the parent drug was biphasic with the short half-life ranging from 0.5-0.7 hours and the terminal half-life from 8 to 26.5 hours (mean 17.25 hours). It is the N-methylated analogue of nitrazepam (Mogadon, Alodorm), to which it is partially metabolised. nitrazepam has a long elimination half-life, so effects of repeated dosage tend to be cumulative.

Recreational Use

Refer to Benzodiazepine Use Disorder.

There is a risk of misuse and dependence in both patients and non-medical users of Nimetazepam. The pharmacological properties of Nimetazepam such as high affinity binding, high potency, being short to intermediate – acting and having a rapid onset of action increase the abuse potential of Nimetazepam. The physical dependence and withdrawal syndrome of Nimetazepam also adds to the addictive nature of Nimetazepam.

Nimetazepam has a particular reputation in South East Asia for recreational use, at around US$ 7 per tab, and is particularly popular among persons addicted to amphetamines or opioids. In addition, Nimetazepam has an anti-depressant and muscle relaxant effect. Nimetazepam also has withdrawal suppression effect and lower drug seeking versus nitrazepam in rhesus monkey (Macaca Mulatta). which might help stimulant addicts to overcome withdrawal symptoms.

Drug Misuse

Nimetazepam has a reputation for being particularly subject to abuse (known as ‘Happy 5’, sold as an ecstasy replacement without a hangover). Although is still a significant drug of abuse in some Asian countries such as Japan and Malaysia, Nimetazepam is subject to legal restrictions in Malaysia, and due to its scarcity, many tablets sold on the black market are in fact counterfeits containing other benzodiazepines such as diazepam or nitrazepam instead.

Legal Status

In the United States, Nimetazepam is categorized Schedule IV FDA and DEA.

Nimetazepam is currently a Schedule IV drug under the international Convention on Psychotropic Substances of 1971.

In Singapore, Nimetazepam is a physician prescribed drug, and is regulated under the Misuse of Drugs Act. The illegal possession or consumption of Nimetazepam is punishable by up to 10 years of imprisonment, a fine of 20,000 Singapore dollars, or both. Importing or exporting nimetazepam is punishable by up to 20 years of imprisonment and/or caning.

In Hong Kong, Nimetazepam is regulated under Schedule 1 of Hong Kong’s Chapter 134 Dangerous Drugs Ordinance. Nimetazepam can only be used legally by health professionals and for university research purposes. The substance can be given by pharmacists under a prescription. Anyone who supplies the substance without prescription can be fined $10000 (HKD). The penalty for trafficking or manufacturing the substance is a $5,000,000 (HKD) fine and life imprisonment. Possession of the substance for consumption without license from the Department of Health is illegal with a $1,000,000 (HKD) fine and/or 7 years of jail time.

Similarly in Taiwan and Indonesia Nimetazepam is also regulated as a controlled prescribed substance.

In Victoria Australia, nimetazepam is regulated under Schedule 11 of “Drugs, Poisons and Controlled substances act 1981”. It is deemed to fall under the category of “7-NITRO-1,4-BENZODIAZEPINES not included elsewhere in this Part”

Toxicity

In a rat study Nimetazepam showed greater damage to the foetus, as did nitrazepam when compared against other benzodiazepines, all at a dosage of 100 mg/kg. Diazepam however showed relatively weak foetal toxicities. The same fetotoxicity of nitrazepam could not be observed in mice and is likely due to the particular metabolism of the drug in the rat.

In a rat study nimetazepam showed slight enlargement of the liver and adrenals and atrophy of the testes and ovaries were found in high dose groups of both drugs at the 4th and 12th week, however, in histopathological examination, there were no change in the liver, adrenals and ovaries. Degenerative changes of seminiferous epithelium in the testes were observed, but these atrophic change returned to normal by withdrawal of the drugs for 12 weeks.

What is Quazepam?

Introduction

Quazepam (marketed under brand names Doral, Dormalin) is a relatively long-acting benzodiazepine derivative drug developed by the Schering Corporation in the 1970s.

Quazepam is indicated for the treatment of insomnia including sleep induction and sleep maintenance. Quazepam induces impairment of motor function and has relatively (and uniquely) selective hypnotic and anticonvulsant properties with considerably less overdose potential than other benzodiazepines (due to its novel receptor-subtype selectively). Quazepam is an effective hypnotic which induces and maintains sleep without disruption of the sleep architecture.

Brief History

It was patented in 1970 and came into medical use in 1985.

Medical Uses

Quazepam is used for short-term treatment of insomnia related to sleep induction or sleep maintenance problems and has demonstrated superiority over other benzodiazepines such as temazepam. It had a fewer incidence of side effects than temazepam, including less sedation, amnesia, and less motor-impairment. Usual dosage is 7.5 to 15 mg orally at bedtime.

Quazepam is effective as a premedication prior to surgery.

Side Effects

Quazepam has fewer side effects than other benzodiazepines and less potential to induce tolerance and rebound effects. There is significantly less potential for quazepam to induce respiratory depression or to adversely affect motor coordination than other benzodiazepines. The different side effect profile of quazepam may be due to its more selective binding profile to type 1 benzodiazepine receptors.

  • Ataxia.
  • Daytime somnolence.
  • Hypokinesia.
  • Cognitive and performance impairments.

In September 2020, the US Food and Drug Administration (FDA) required the boxed warning be updated for all benzodiazepine medicines to describe the risks of abuse, misuse, addiction, physical dependence, and withdrawal reactions consistently across all the medicines in the class.

Tolerance and Dependence

Tolerance may occur to quazepam but more slowly than seen with other benzodiazepines such as triazolam. Quazepam causes significantly less drug tolerance and less withdrawal symptoms including less rebound insomnia upon discontinuation compared to other benzodiazepines. Quazepam may cause less rebound effects than other type1 benzodiazepine receptor selective nonbenzodiazepine drugs due to its longer half-life. Short-acting hypnotics often cause next day rebound anxiety. Quazepam due to its pharmacological profile does not cause next day rebound withdrawal effects during treatment.

No firm conclusions can be drawn, however, whether long-term use of quazepam does not produce tolerance as few, if any, long-term clinical trials extending beyond 4 weeks of chronic use have been conducted. Quazepam should be withdrawn gradually if used beyond 4 weeks of use to avoid the risk of a severe benzodiazepine withdrawal syndrome developing. Very high dosage administration over prolonged periods of time, up to 52 weeks, of quazepam in animal studies provoked severe withdrawal symptoms upon abrupt discontinuation, including excitability, hyperactivity, convulsions and the death of two of the monkeys due to withdrawal-related convulsions. More monkeys died, however, in the diazepam-treated monkeys. In addition it has now been documented in the medical literature that one of the major metabolites of quazepam, N-desalkyl-2-oxoquazepam (N-desalkylflurazepam), which is long-acting and prone to accumulation, binds unselectively to benzodiazepine receptors, thus quazepam may not differ all that much pharmacologically from other benzodiazepines.

Special Precautions

Benzodiazepines require special precaution if used in the during pregnancy, in children, alcohol or drug-dependent individuals and individuals with comorbid psychiatric disorders.

Quazepam and its active metabolites are excreted into breast milk.

Accumulation of one of the active metabolites of quazepam, N-desalkylflurazepam, may occur in the elderly. A lower dose may be required in the elderly.

Elderly

Quazepam is more tolerable for elderly patients compared to flurazepam due to its reduced next day impairments. However, another study showed marked next day impairments after repeated administration due to accumulation of quazepam and its long-acting metabolites. Thus the medical literature shows conflicts on quazepam’s side effect profile. A further study showed significant balance impairments combined with an unstable posture after administration of quazepam in test subjects. An extensive review of the medical literature regarding the management of insomnia and the elderly found that there is considerable evidence of the effectiveness and durability of non-drug treatments for insomnia in adults of all ages and that these interventions are underutilised. Compared with the benzodiazepines including quazepam, the nonbenzodiazepine sedative/hypnotics appeared to offer few, if any, significant clinical advantages in efficacy or tolerability in elderly persons. It was found that newer agents with novel mechanisms of action and improved safety profiles, such as the melatonin agonists, hold promise for the management of chronic insomnia in elderly people. Long-term use of sedative/hypnotics for insomnia lacks an evidence base and has traditionally been discouraged for reasons that include concerns about such potential adverse drug effects as cognitive impairment (anterograde amnesia), daytime sedation, motor incoordination, and increased risk of motor vehicle accidents and falls. In addition, the effectiveness and safety of long-term use of these agents remain to be determined. It was concluded that more research is needed to evaluate the long-term effects of treatment and the most appropriate management strategy for elderly persons with chronic insomnia.

Interactions

The absorption rate is likely to be significantly reduced if quazepam is taken in the fasted state reducing the hypnotic effect of quazepam. If 3 or more hours have passed since eating food then some food should be eaten before taking quazepam.

Pharmacology

Quazepam is a trifluoroalkyl type of benzodiazepine. Quazepam is unique amongst benzodiazepines in that it selectively targets the GABAA α1 subunit receptors which are responsible for inducing sleep. Its mechanism of action is very similar to zolpidem and zaleplon in its pharmacology and can successfully substitute for zolpidem and zaleplon in animal studies.

Quazepam is selective for type I benzodiazepine receptors containing the α1 subunit, similar to other drugs such as zaleplon and zolpidem. As a result, quazepam has little or no muscle relaxant properties. Most other benzodiazepines are unselective and bind to type1 GABAA receptors and type2 GABAA receptors. Type1 GABAA receptors include the α1 subunit containing GABAA receptors which are responsible for hypnotic properties of the drug. Type 2 receptors include the α2, α3 and α5 subunits which are responsible for anxiolytic action, amnesia and muscle relaxant properties. Thus quazepam may have less side effects than other benzodiazepines but, it has a very long half-life of 25 hours which reduces its benefits as a hypnotic due to likely next day sedation. It also has two active metabolites with half-lives of 28 and 79 hours. Quazepam may also cause less drug tolerance than other benzodiazepines such as temazepam and triazolam perhaps due to its subtype selectivity. The longer half-life of quazepam may have the advantage however, of causing less rebound insomnia than shorter acting subtype selective nonbenzodiazepines. However, one of the major metabolites of quazepam, the N-desmethyl-2-oxoquazepam (aka N-desalkylflurazepam), binds unselectively to both type1 and type2 GABAA receptors. The N-desmethyl-2-oxoquazepam metabolite also has a very long half-life and likely contributes to the pharmacological effects of quazepam.

Pharmacokinetics

Quazepam has an absorption half-life of 0.4 hours with a peak in plasma levels after 1.75 hours. It is eliminated both renally and through faeces. The active metabolites of quazepam are 2-oxoquazepam and N-desalkyl-2-oxoquazepam. The N-desalkyl-2-oxoquazepam metabolite has only limited pharmacological activity compared to the parent compound quazepam and the active metabolite 2-oxoquazepam. Quazepam and its major active metabolite 2-oxoquazepam both show high selectivity for the type1 GABAA receptors. The elimination half-life range of quazepam is between 27 and 41 hours.

Mechanism of Action

Quazepam modulates specific GABAA receptors via the benzodiazepine site on the GABAA receptor. This modulation enhances the actions of GABA, causing an increase in opening frequency of the chloride ion channel which results in an increased influx of chloride ions into the GABAA receptors. Quazepam, unique amongst benzodiazepine drugs selectively targets type1 benzodiazepine receptors which results reduced sleep latency in promotion of sleep. Quazepam also has some anticonvulsant properties.

EEG and Sleep

Quazepam has potent sleep inducing and sleep maintaining properties. Studies in both animals and humans have demonstrated that EEG changes induced by quazepam resemble normal sleep patterns whereas other benzodiazepines disrupt normal sleep. Quazepam promotes slow wave sleep. This positive effect of quazepam on sleep architecture may be due to its high selectivity for type1 benzodiazepine receptors as demonstrated in animal and human studies. This makes quazepam unique in the benzodiazepine family of drugs.

Drug Misuse

Refer to Benzodiazepine Use Disorder.

Quazepam is a drug with the potential for misuse. Two types of drug misuse can occur, either recreational misuse where the drug is taken to achieve a high, or when the drug is continued long term against medical advice.

What is Midazolam?

Introduction

Midazolam, sold under the brand name Versed, among others, is a benzodiazepine medication used for anaesthesia, procedural sedation, trouble sleeping, and severe agitation.

It works by inducing sleepiness, decreasing anxiety, and causing a loss of ability to create new memories. It is also useful for the treatment of seizures. Midazolam can be given by mouth, intravenously, or injection into a muscle, by spraying into the nose, or through the cheek. When given intravenously, it typically begins working within five minutes; when injected into a muscle, it can take fifteen minutes to begin working. Effects last for between one and six hours.

Side effects can include a decrease in efforts to breathe, low blood pressure, and sleepiness. Tolerance to its effects and withdrawal syndrome may occur following long-term use. Paradoxical effects, such as increased activity, can occur especially in children and older people. There is evidence of risk when used during pregnancy but no evidence of harm with a single dose during breastfeeding. It belongs to the benzodiazepine class of drugs and works by increasing the activity of the GABA neurotransmitter in the brain.

Midazolam was patented in 1974 and came into medical use in 1982. It is on the World Health Organisation’s List of Essential Medicines. Midazolam is available as a generic medication. In many countries, it is a controlled substance.

Brief History

Midazolam is among about 35 benzodiazepines currently used medically, and was synthesized in 1975 by Walser and Fryer at Hoffmann-LaRoche, Inc in the United States. Owing to its water solubility, it was found to be less likely to cause thrombophlebitis than similar drugs. The anticonvulsant properties of midazolam were studied in the late 1970s, but not until the 1990s did it emerge as an effective treatment for convulsive status epilepticus. As of 2010, it is the most commonly used benzodiazepine in anaesthetic medicine. In acute medicine, midazolam has become more popular than other benzodiazepines, such as lorazepam and diazepam, because it is shorter lasting, is more potent, and causes less pain at the injection site. Midazolam is also becoming increasingly popular in veterinary medicine due to its water solubility. In 2018 it was revealed the CIA considered using Midazolam as a “truth serum” on terrorist suspects in project “Medication”.

Medical Uses

Seizures

Midazolam is sometimes used for the acute management of seizures. Long-term use for the management of epilepsy is not recommended due to the significant risk of tolerance (which renders midazolam and other benzodiazepines ineffective) and the significant side effect of sedation. A benefit of midazolam is that in children it can be given in the cheek or in the nose for acute seizures, including status epilepticus. Midazolam is effective for status epilepticus that has not improved following other treatments or when intravenous access cannot be obtained, and has advantages of being water-soluble, having a rapid onset of action and not causing metabolic acidosis from the propylene glycol vehicle (which is not required due to its solubility in water), which occurs with other benzodiazepines.

Drawbacks include a high degree of breakthrough seizures – due to the short half-life of midazolam – in over 50% of people treated, as well as treatment failure in 14-18% of people with refractory status epilepticus. Tolerance develops rapidly to the anticonvulsant effect, and the dose may need to be increased by several times to maintain anticonvulsant therapeutic effects. With prolonged use, tolerance and tachyphylaxis can occur and the elimination half-life may increase, up to days. There is evidence buccal and intranasal midazolam is easier to administer and more effective than rectally administered diazepam in the emergency control of seizures.

Procedural Sedation

Intravenous midazolam is indicated for procedural sedation (often in combination with an opioid, such as fentanyl), for preoperative sedation, for the induction of general anaesthesia, and for sedation of people who are ventilated in critical care units. Midazolam is superior to diazepam in impairing memory of endoscopy procedures, but propofol has a quicker recovery time and a better memory-impairing effect. It is the most popular benzodiazepine in the intensive care unit (ICU) because of its short elimination half-life, combined with its water solubility and its suitability for continuous infusion. However, for long-term sedation, lorazepam is preferred due to its long duration of action, and propofol has advantages over midazolam when used in the ICU for sedation, such as shorter weaning time and earlier tracheal extubation.

Midazolam is sometimes used in neonatal intensive care units. When used, additional caution is required in newborns; midazolam should not be used for longer than 72 hours due to risks of tachyphylaxis, and the possibility of development of a benzodiazepine withdrawal syndrome, as well as neurological complications. Bolus injections should be avoided due to the increased risk of cardiovascular depression, as well as neurological complications. Midazolam is also sometimes used in newborns who are receiving mechanical ventilation, although morphine is preferred, owing to its better safety profile for this indication.

Sedation using midazolam can be used to relieve anxiety and manage behaviour in children undergoing dental treatment.

Agitation

Midazolam, in combination with an antipsychotic drug, is indicated for the acute management of schizophrenia when it is associated with aggressive or out-of-control behaviour.

End of Life Care

In the final stages of end-of-life care, midazolam is routinely used at low doses via subcutaneous injection to help with agitation, myoclonus, restlessness or anxiety in the last hours or days of life. At higher doses during the last weeks of life, midazolam is considered a first line agent in palliative continuous deep sedation therapy when it is necessary to alleviate intolerable suffering not responsive to other treatments, but the need for this is rare.

Contraindications

Benzodiazepines require special precaution if used in the elderly, during pregnancy, in children, in alcohol- or other drug-dependent individuals or those with comorbid psychiatric disorders.[31] Additional caution is required in critically ill patients, as accumulation of midazolam and its active metabolites may occur.[32] Kidney or liver impairments may slow down the elimination of midazolam leading to prolonged and enhanced effects.[33][34] Contraindications include hypersensitivity, acute narrow-angle glaucoma, shock, hypotension, or head injury. Most are relative contraindications.

Side Effects

Refer to Long-term Effects of Benzodiazepine Use.

Side effects of midazolam in the elderly are listed above. People experiencing amnesia as a side effect of midazolam are generally unaware their memory is impaired, unless they had previously known it as a side effect.

Long-term use of benzodiazepines has been associated with long-lasting deficits of memory, and show only partial recovery six months after stopping benzodiazepines. It is unclear whether full recovery occurs after longer periods of abstinence. Benzodiazepines can cause or worsen depression. Paradoxical excitement occasionally occurs with benzodiazepines, including a worsening of seizures. Children and elderly individuals or those with a history of excessive alcohol use and individuals with a history of aggressive behaviour or anger are at increased risk of paradoxical effects. Paradoxical reactions are particularly associated with intravenous administration. After night-time administration of midazolam, residual ‘hangover’ effects, such as sleepiness and impaired psychomotor and cognitive functions, may persist into the next day. This may impair the ability of users to drive safely and may increase the risk of falls and hip fractures. Sedation, respiratory depression and hypotension due to a reduction in systematic vascular resistance, and an increase in heart rate can occur. If intravenous midazolam is given too quickly, hypotension may occur. A “midazolam infusion syndrome” may result from high doses, and is characterised by delayed arousal hours to days after discontinuation of midazolam, and may lead to an increase in the length of ventilatory support needed.

In susceptible individuals, midazolam has been known to cause a paradoxical reaction, a well-documented complication with benzodiazepines. When this occurs, the individual may experience anxiety, involuntary movements, aggressive or violent behaviour, uncontrollable crying or verbalisation, and other similar effects. This seems to be related to the altered state of consciousness or disinhibition produced by the drug. Paradoxical behaviour is often not recalled by the patient due to the amnesia-producing properties of the drug. In extreme situations, flumazenil can be administered to inhibit or reverse the effects of midazolam. Antipsychotic medications, such as haloperidol, have also been used for this purpose.

Midazolam is known to cause respiratory depression. In healthy humans, 0.15 mg/kg of midazolam may cause respiratory depression, which is postulated to be a central nervous system (CNS) effect. When midazolam is administered in combination with fentanyl, the incidence of hypoxemia or apnoea becomes more likely.

Although the incidence of respiratory depression/arrest is low (0.1-0.5%) when midazolam is administered alone at normal doses, the concomitant use with CNS acting drugs, mainly analgesic opiates, may increase the possibility of hypotension, respiratory depression, respiratory arrest, and death, even at therapeutic doses. Potential drug interactions involving at least one CNS depressant were observed for 84% of midazolam users who were subsequently required to receive the benzodiazepine antagonist flumazenil. Therefore, efforts directed toward monitoring drug interactions and preventing injuries from midazolam administration are expected to have a substantial impact on the safe use of this drug

Pregnancy and Breastfeeding

Midazolam, when taken during the third trimester of pregnancy, may cause risk to the neonate, including benzodiazepine withdrawal syndrome, with possible symptoms including hypotonia, apnoeic spells, cyanosis, and impaired metabolic responses to cold stress. Symptoms of hypotonia and the neonatal benzodiazepine withdrawal syndrome have been reported to persist from hours to months after birth. Other neonatal withdrawal symptoms include hyperexcitability, tremor, and gastrointestinal upset (diarrhoea or vomiting). Breastfeeding by mothers using midazolam is not recommended.

Elderly

Additional caution is required in the elderly, as they are more sensitive to the pharmacological effects of benzodiazepines, metabolise them more slowly, and are more prone to adverse effects, including drowsiness, amnesia (especially anterograde amnesia), ataxia, hangover effects, confusion, and falls.

Tolerance, Dependence, and Withdrawal

A benzodiazepine dependence occurs in about one-third of individuals who are treated with benzodiazepines for longer than 4 weeks, which typically results in tolerance and benzodiazepine withdrawal syndrome when the dose is reduced too rapidly. Midazolam infusions may induce tolerance and a withdrawal syndrome in a matter of days. The risk factors for dependence include dependent personality, use of a benzodiazepine that is short-acting, high potency and long-term use of benzodiazepines. Withdrawal symptoms from midazolam can range from insomnia and anxiety to seizures and psychosis. Withdrawal symptoms can sometimes resemble a person’s underlying condition. Gradual reduction of midazolam after regular use can minimise withdrawal and rebound effects. Tolerance and the resultant withdrawal syndrome may be due to receptor down-regulation and GABAA receptor alterations in gene expression, which causes long-term changes in the function of the GABAergic neuronal system.

Chronic users of benzodiazepine medication who are given midazolam experience reduced therapeutic effects of midazolam, due to tolerance to benzodiazepines. Prolonged infusions with midazolam results in the development of tolerance; if midazolam is given for a few days or more a withdrawal syndrome can occur. Therefore, preventing a withdrawal syndrome requires that a prolonged infusion be gradually withdrawn, and sometimes, continued tapering of dose with an oral long-acting benzodiazepine such as clorazepate dipotassium. When signs of tolerance to midazolam occur during intensive care unit sedation the addition of an opioid or propofol is recommended. Withdrawal symptoms can include irritability, abnormal reflexes, tremors, clonus, hypertonicity, delirium and seizures, nausea, vomiting, diarrhoea, tachycardia, hypertension, and tachypnoea. In those with significant dependence, sudden discontinuation may result in withdrawal symptoms such as status epilepticus that may be fatal.

Overdose

Refer to Benzodiazepine Overdose.

A midazolam overdose is considered a medical emergency and generally requires the immediate attention of medical personnel. Benzodiazepine overdose in healthy individuals is rarely life-threatening with proper medical support; however, the toxicity of benzodiazepines increases when they are combined with other CNS depressants such as alcohol, opioids, or tricyclic antidepressants. The toxicity of benzodiazepine overdose and risk of death is also increased in the elderly and those with obstructive pulmonary disease or when used intravenously. Treatment is supportive; activated charcoal can be used within an hour of the overdose. The antidote for an overdose of midazolam (or any other benzodiazepine) is flumazenil. While effective in reversing the effects of benzodiazepines it is not used in most cases as it may trigger seizures in mixed overdoses and benzodiazepine dependent individuals.

Symptoms of midazolam overdose can include:

  • Ataxia.
  • Dysarthria.
  • Nystagmus.
  • Slurred speech.
  • Somnolence (difficulty staying awake).
  • Mental confusion.
  • Hypotension.
  • Respiratory arrest.
  • Vasomotor collapse.
  • Impaired motor functions.
    • Impaired reflexes.
    • Impaired coordination.
    • Impaired balance.
  • Dizziness.
  • Coma.
  • Death.

Detection in Body Fluids

Concentrations of midazolam or its major metabolite, 1-hydroxymidazolam glucuronide, may be measured in plasma, serum, or whole blood to monitor for safety in those receiving the drug therapeutically, to confirm a diagnosis of poisoning in hospitalised patients, or to assist in a forensic investigation of a case of fatal overdosage. Patients with renal dysfunction may exhibit prolongation of elimination half-life for both the parent drug and its active metabolite, with accumulation of these two substances in the bloodstream and the appearance of adverse depressant effects.

Interactions

Protease inhibitors, nefazodone, sertraline, grapefruit, fluoxetine, erythromycin, diltiazem, clarithromycin inhibit the metabolism of midazolam, leading to a prolonged action. St John’s wort, rifapentine, rifampin, rifabutin, phenytoin enhance the metabolism of midazolam leading to a reduced action. Sedating antidepressants, antiepileptic drugs such as phenobarbital, phenytoin and carbamazepine, sedative antihistamines, opioids, antipsychotics and alcohol enhance the sedative effects of midazolam. Midazolam is metabolised almost completely by cytochrome P450-3A4. Atorvastatin administration along with midazolam results in a reduced elimination rate of midazolam. St John’s wort decreases the blood levels of midazolam. Grapefruit juice reduces intestinal 3A4 and results in less metabolism and higher plasma concentrations.

Pharmacology

Midazolam is a short-acting benzodiazepine in adults with an elimination half-life of 1.5-2.5 hours. In the elderly, as well as young children and adolescents, the elimination half-life is longer. Midazolam is metabolised into an active metabolite alpha1-hydroxymidazolam. Age-related deficits, renal and liver status affect the pharmacokinetic factors of midazolam as well as its active metabolite. However, the active metabolite of midazolam is minor and contributes to only 10% of biological activity of midazolam. Midazolam is poorly absorbed orally, with only 50% of the drug reaching the bloodstream. Midazolam is metabolised by cytochrome P450 (CYP) enzymes and by glucuronide conjugation. The therapeutic as well as adverse effects of midazolam are due to its effects on the GABAA receptors; midazolam does not activate GABAA receptors directly but, as with other benzodiazepines, it enhances the effect of the neurotransmitter GABA on the GABAA receptors (↑ frequency of Cl− channel opening) resulting in neural inhibition. Almost all of the properties can be explained by the actions of benzodiazepines on GABAA receptors. This results in the following pharmacological properties being produced: sedation, induction of sleep, reduction in anxiety, anterograde amnesia, muscle relaxation and anticonvulsant effects.

Society and Culture

Cost

Midazolam is available as a generic medication.

Availability

Midazolam is available in the United States as a syrup or as an injectable solution.

Dormicum brand midazolam is marketed by Roche as white, oval, 7.5-mg tablets in boxes of two or three blister strips of 10 tablets, and as blue, oval, 15-mg tablets in boxes of two (Dormonid 3x) blister strips of 10 tablets. The tablets are imprinted with “Roche” on one side and the dose of the tablet on the other side. Dormicum is also available as 1-, 3-, and 10-ml ampoules at a concentration of 5 mg/ml. Another manufacturer, Novell Pharmaceutical Laboratories, makes it available as Miloz in 3- and 5-ml ampoules. Midazolam is the only water-soluble benzodiazepine available. Another maker is Roxane Laboratories; the product in an oral solution, Midazolam HCl Syrup, 2 mg/ml clear, in a red to purplish-red syrup, cherry in flavour. It becomes soluble when the injectable solution is buffered to a pH of 2.9-3.7. Midazolam is also available in liquid form. It can be administered intramuscularly, intravenously, intrathecally, intranasally, buccally, or orally.

Legal Status

In the Netherlands, midazolam is a List II drug of the Opium Law. Midazolam is a Schedule IV drug under the Convention on Psychotropic Substances. In the United Kingdom, midazolam is a Schedule 3/Class C controlled drug. In the United States, midazolam (DEA number 2884) is on the Schedule IV list of the Controlled Substances Act as a non-narcotic agent with low potential for abuse.

Marketing Authorisation

In 2011, the European Medicines Agency (EMA) granted a marketing authorisation for a buccal application form of midazolam, sold under the trade name Buccolam. Buccolam was approved for the treatment of prolonged, acute, convulsive seizures in people from three months to less than 18 years of age. This was the first application of a paediatric-use marketing authorisation.

Use in Executions

The drug has been introduced for use in executions by lethal injection in certain jurisdictions in the United States in combination with other drugs. It was introduced to replace pentobarbital after the latter’s manufacturer disallowed that drug’s use for executions. Midazolam acts as a sedative to render the condemned prisoner unconscious, at which time vecuronium bromide and potassium chloride are administered, stopping the prisoner’s breathing and heart, respectively.

Midazolam has been used as part of a three-drug cocktail, with vecuronium bromide and potassium chloride in Florida and Oklahoma prisons. Midazolam has also been used along with hydromorphone in a two-drug protocol in Ohio and Arizona.

The usage of midazolam in executions became controversial after condemned inmate Clayton Lockett apparently regained consciousness and started speaking midway through his 2014 execution when the state of Oklahoma attempted to execute him with an untested three-drug lethal injection combination using 100 mg of midazolam. Prison officials reportedly discussed taking him to a hospital before he was pronounced dead of a heart attack 40 minutes after the execution began. An observing doctor stated that Lockett’s vein had ruptured. It is not clear which drug or drugs caused his death or what quantities of vecuronium bromide and potassium chloride were released before the execution was cancelled.

Notable Incidents

The state of Florida used midazolam to execute William Frederick Happ in October 2013.

The state of Ohio used midazolam in the execution of Dennis McGuire in January 2014; it took McGuire 24 minutes to die after the procedure started, and he gasped and appeared to be choking during that time, leading to questions about the dosing and timing of the drug administration, as well as the choice of drugs.

The execution of Ronald Bert Smith in the state of Alabama on 08 December 2016, “went awry soon after (midazolam) was administered” again putting the effectiveness of the drug in question.

In October 2016, the state of Ohio announced that it would resume executions in January 2017, using a formulation of midazolam, vecuronium bromide, potassium chloride, but this was blocked by a Federal judge. On 26 July 2017, Ronald Phillips was executed with a three-drug cocktail including midazolam after the Supreme Court refused to grant a stay.[86] Prior to this, the last execution in Ohio had been that of Dennis McGuire. Murderer Gary Otte’s lawyers unsuccessfully challenged his Ohio execution, arguing that midazolam might not protect him from serious pain when the other drugs are administered. He died without incident in about 14 minutes on 13 September 2017.

On 24 April 2017, the state of Arkansas carried out a double-execution of Jack Harold Jones, 52, and Marcel Williams, 46. The state of Arkansas attempted to execute eight people before its supply of midazolam expired on 30 April 2017. Two of them were granted a stay of execution, and another, Ledell T. Lee, 51, was executed on 20 April 2017.

Legal Challenges

In Glossip v. Gross, attorneys for three Oklahoma inmates argued that midazolam could not achieve the level of unconsciousness required for surgery, meaning severe pain and suffering was likely. They argued that midazolam was cruel and unusual punishment and thus contrary to the Eighth Amendment to the United States Constitution. In June 2015, the US Supreme Court ruled that they had failed to prove that midazolam was cruel and unusual when compared to known, available alternatives.

The state of Nevada is also known to use midazolam in execution procedures. In July 2018, one of the manufacturers accused state officials of obtaining the medication under false pretences. This incident was the first time a drug company successfully, though temporarily, halted an execution. A previous attempt in 2017, to halt an execution in the state of Arizona by another drug manufacturer was not successful.

Who was Heather Ashton?

Introduction

Heather Ashton FRCP (11 July 1929 to 15 September 2019) was a British psychopharmacologist and physician. She is best known for her clinical and research work on benzodiazepene dependence.

Biography

Chrystal Heather Champion was born in Dehradun, northern India, to Harry Champion, a British silviculturalist, and Chrystal (Parsons) Champion, a secretary. From the age of six, she attended a boarding school in Swanage, Dorset, England. When WWII began, she was evacuated to West Chester, Pennsylvania; during the crossing, her ship was attacked by a U-boat.

Ashton went on to study Medicine at Somerville College, Oxford, graduating with a First Class Honours Degree (BA) in Physiology in 1951. She earned her medical degree (DM) in 1956. She completed professional training at Middlesex Hospital. She was elected as a Fellow of the Royal College of Physicians, London, in 1975.

In 1965, Ashton joined the faculty at Newcastle University, first in the Department of Pharmacology and later in the Department of Psychiatry. From 1982 to 1994, she ran a benzodiazepine withdrawal clinic at the Royal Victoria Infirmary in Newcastle. She was on the executive committee of the North East Council on Addictions. Ashton also helped set up the British organisation Victims of Tranquillisers (VOT). She also gave evidence to British government committees on tobacco smoking, cannabis and benzodiazepines.

Ashton died on 15 September 2019 at her home in Newcastle upon Tyne, at age 90.

Research

Ashton’s developed her expertise in the effects of psychoactive drugs and the effects of substances such as nicotine and cannabis on the brain.

During the 1960s, benzodiazepines, like diazepam and temazepam, had become popular and were seen as safe and effective treatments for anxiety or insomnia. One study found that the overdose death rate among patients taking both benzodiazepines and opioids was 10 times higher than among those who only took opioids.

Ashton’s research on these drugs found that they could be used in the short term, but could lead to physical dependence over the long-term. She also recognised that this benzodiazepine withdrawal syndrome was very different from those addicted to illegal drugs. This led to her writing an important manual to help those who were trying to stop their prescribed benzodiazepine. This manual is now used all over the world. This book, Benzodiazepines: How They Work and How to Withdraw, was first published in 1999; it has become known as the Ashton Manual and has been translated into 11 languages. Ashton’s research was influential, leading to changes in prescribing practices and guidelines recommended for benzodiazepines in 2013. Her research on psychotropic drugs led to over 200 journal articles, chapters and books, including over 50 papers concerning benzodiazepines alone.

What is Diazepam?

Introduction

Diazepam, first marketed as Valium, is a medicine of the benzodiazepine family that acts as an anxiolytic.

It is commonly used to treat a range of conditions, including anxiety, seizures, alcohol withdrawal syndrome, benzodiazepine withdrawal syndrome, muscle spasms, insomnia, and restless legs syndrome. It may also be used to cause memory loss during certain medical procedures. It can be taken by mouth, inserted into the rectum, injected into muscle, injected into a vein or used as a nasal spray. When given into a vein, effects begin in one to five minutes and last up to an hour. By mouth, effects begin after 15 to 60 minutes.

Common side effects include sleepiness and trouble with coordination. Serious side effects are rare. They include suicide, decreased breathing, and an increased risk of seizures if used too frequently in those with epilepsy. Occasionally, excitement or agitation may occur. Long term use can result in tolerance, dependence, and withdrawal symptoms on dose reduction. Abrupt stopping after long-term use can be potentially dangerous. After stopping, cognitive problems may persist for six months or longer. It is not recommended during pregnancy or breastfeeding. Its mechanism of action is by increasing the effect of the neurotransmitter gamma-aminobutyric acid (GABA).

Diazepam was patented in 1959 by Hoffmann-La Roche. It has been one of the most frequently prescribed medications in the world since its launch in 1963. In the United States it was the highest selling medication between 1968 and 1982, selling more than 2 billion tablets in 1978 alone. In 2018, it was the 115th most commonly prescribed medication in the United States, with more than 6 million prescriptions. In 1985 the patent ended, and there are more than 500 brands available on the market. It is on the World Health Organisation’s List of Essential Medicines.

Brief History

Diazepam was the second benzodiazepine invented by Leo Sternbach of Hoffmann-La Roche at the company’s Nutley, New Jersey, facility following chlordiazepoxide (Librium), which was approved for use in 1960. Released in 1963 as an improved version of Librium, diazepam became incredibly popular, helping Roche to become a pharmaceutical industry giant. It is 2.5 times more potent than its predecessor, which it quickly surpassed in terms of sales. After this initial success, other pharmaceutical companies began to introduce other benzodiazepine derivatives.

The benzodiazepines gained popularity among medical professionals as an improvement over barbiturates, which have a comparatively narrow therapeutic index, and are far more sedative at therapeutic doses. The benzodiazepines are also far less dangerous; death rarely results from diazepam overdose, except in cases where it is consumed with large amounts of other depressants (such as alcohol or opioids). Benzodiazepine drugs such as diazepam initially had widespread public support, but with time the view changed to one of growing criticism and calls for restrictions on their prescription.

Marketed by Roche using an advertising campaign conceived by the William Douglas McAdams Agency under the leadership of Arthur Sackler, diazepam was the top-selling pharmaceutical in the United States from 1969 to 1982, with peak annual sales in 1978 of 2.3 billion tablets. Diazepam, along with oxazepam, nitrazepam and temazepam, represents 82% of the benzodiazepine market in Australia. While psychiatrists continue to prescribe diazepam for the short-term relief of anxiety, neurology has taken the lead in prescribing diazepam for the palliative treatment of certain types of epilepsy and spastic activity, for example, forms of paresis. It is also the first line of defence for a rare disorder called stiff-person syndrome.

Medical Uses

Diazepam is mainly used to treat anxiety, insomnia, panic attacks and symptoms of acute alcohol withdrawal. It is also used as a premedication for inducing sedation, anxiolysis, or amnesia before certain medical procedures (e.g. endoscopy). In 2020, it was approved for use in the United States as a nasal spray to interrupt seizure activity in people with epilepsy. Diazepam is the most commonly used benzodiazepine for “tapering” benzodiazepine dependence due to the drug’s comparatively long half-life, allowing for more efficient dose reduction. Benzodiazepines have a relatively low toxicity in overdose.

Diazepam has a number of uses including:

  • Treatment of anxiety, panic attacks, and states of agitation.
  • Treatment of neurovegetative symptoms associated with vertigo.
  • Treatment of the symptoms of alcohol, opiate, and benzodiazepine withdrawal.
  • Short-term treatment of insomnia.
  • Treatment of muscle spasms.
  • Treatment of tetanus, together with other measures of intensive treatment.
  • Adjunctive treatment of spastic muscular paresis (paraplegia/tetraplegia) caused by cerebral or spinal cord conditions such as stroke, multiple sclerosis, or spinal cord injury (long-term treatment is coupled with other rehabilitative measures).
  • Palliative treatment of stiff person syndrome.
  • Pre- or postoperative sedation, anxiolysis or amnesia (e.g. before endoscopic or surgical procedures).
  • Treatment of complications with a hallucinogen crisis and stimulant overdoses and psychosis, such as LSD, cocaine, or methamphetamine.

Used in treatment of organophosphate poisoning and reduces the risk of seizure induced brain and cardiac damage.

  • Preventive treatment of oxygen toxicity during hyperbaric oxygen therapy.

Dosages should be determined on an individual basis, depending on the condition being treated, severity of symptoms, patient body weight, and any other conditions the person may have.

Seizures

Intravenous diazepam or lorazepam are first-line treatments for status epilepticus. However, intravenous lorazepam has advantages over intravenous diazepam, including a higher rate of terminating seizures and a more prolonged anticonvulsant effect. Diazepam gel was better than placebo gel in reducing the risk of non-cessation of seizures. Diazepam is rarely used for the long-term treatment of epilepsy because tolerance to its anticonvulsant effects usually develops within six to 12 months of treatment, effectively rendering it useless for that purpose.

The anticonvulsant effects of diazepam can help in the treatment of seizures due to a drug overdose or chemical toxicity as a result of exposure to sarin, VX, or soman (or other organophosphate poisons), lindane, chloroquine, physostigmine, or pyrethroids.

Diazepam is sometimes used intermittently for the prevention of febrile seizures that may occur in children under five years of age. Recurrence rates are reduced, but side effects are common. Long-term use of diazepam for the management of epilepsy is not recommended; however, a subgroup of individuals with treatment-resistant epilepsy benefit from long-term benzodiazepines, and for such individuals, clorazepate has been recommended due to its slower onset of tolerance to the anticonvulsant effects.

Alcohol Withdrawal

Because of its relatively long duration of action, and evidence of safety and efficacy, diazepam is preferred over other benzodiazepines for treatment of persons experiencing moderate to severe alcohol withdrawal. An exception to this is when a medication is required intramuscular in which case either lorazepam or midazolam is recommended.

Other

Diazepam is used for the emergency treatment of eclampsia, when IV magnesium sulfate and blood-pressure control measures have failed. Benzodiazepines do not have any pain-relieving properties themselves, and are generally recommended to avoid in individuals with pain. However, benzodiazepines such as diazepam can be used for their muscle-relaxant properties to alleviate pain caused by muscle spasms and various dystonias, including blepharospasm. Tolerance often develops to the muscle relaxant effects of benzodiazepines such as diazepam. Baclofen or tizanidine is sometimes used as an alternative to diazepam.

Availability

Diazepam is marketed in over 500 brands throughout the world. It is supplied in oral, injectable, inhalation, and rectal forms.

The United States military employs a specialised diazepam preparation known as Convulsive Antidote, Nerve Agent (CANA), which contains diazepam. One CANA kit is typically issued to service members, along with three Mark I NAAK kits, when operating in circumstances where chemical weapons in the form of nerve agents are considered a potential hazard. Both of these kits deliver drugs using autoinjectors. They are intended for use in “buddy aid” or “self aid” administration of the drugs in the field prior to decontamination and delivery of the patient to definitive medical care.

Contraindications

Use of diazepam should be avoided, when possible, in individuals with:

  • Ataxia.
  • Severe hypoventilation.
  • Acute narrow-angle glaucoma.
  • Severe hepatic deficiencies (hepatitis and liver cirrhosis decrease elimination by a factor of two).
  • Severe renal deficiencies (for example, patients on dialysis).
  • Liver disorders.
  • Severe sleep apnoea.
  • Severe depression, particularly when accompanied by suicidal tendencies.
  • Psychosis.
  • Pregnancy or breast feeding.
  • Caution required in elderly or debilitated patients.
  • Coma or shock.
  • Abrupt discontinuation of therapy.
  • Acute intoxication with alcohol, narcotics, or other psychoactive substances (with the exception of hallucinogens or some stimulants, where it is occasionally used as a treatment for overdose).
  • History of alcohol or drug dependence.
  • Myasthenia gravis, an autoimmune disorder causing marked fatiguability.
  • Hypersensitivity or allergy to any drug in the benzodiazepine class.

Caution

  • Benzodiazepine abuse and misuse should be guarded against when prescribed to those with alcohol or drug dependencies or who have psychiatric disorders.
  • Paediatric patients.
    • Less than 18 years of age, this treatment is usually not indicated, except for treatment of epilepsy, and pre- or postoperative treatment. The smallest possible effective dose should be used for this group of patients.
    • Under 6 months of age, safety and effectiveness have not been established; diazepam should not be given to those in this age group.
  • Elderly and very ill patients can possibly suffer apnoea or cardiac arrest. Concomitant use of other central nervous system depressants increases this risk. The smallest possible effective dose should be used for this group of people. The elderly metabolise benzodiazepines much more slowly than younger adults, and are also more sensitive to the effects of benzodiazepines, even at similar blood plasma levels. Doses of diazepam are recommended to be about half of those given to younger people, and treatment limited to a maximum of two weeks. Long-acting benzodiazepines such as diazepam are not recommended for the elderly. Diazepam can also be dangerous in geriatric patients owing to a significant increased risk of falls.
  • Intravenous or intramuscular injections in hypotensive people or those in shock should be administered carefully and vital signs should be monitored.
  • Benzodiazepines such as diazepam are lipophilic and rapidly penetrate membranes, so rapidly cross over into the placenta with significant uptake of the drug. Use of benzodiazepines including diazepam in late pregnancy, especially high doses, can result in floppy infant syndrome. Diazepam when taken late in pregnancy, during the third trimester, causes a definite risk of a severe benzodiazepine withdrawal syndrome in the neonate with symptoms including hypotonia, and reluctance to suck, to apnoeic spells, cyanosis, and impaired metabolic responses to cold stress. Floppy infant syndrome and sedation in the newborn may also occur. Symptoms of floppy infant syndrome and the neonatal benzodiazepine withdrawal syndrome have been reported to persist from hours to months after birth.

Adverse Effects

Adverse effects of benzodiazepines such as diazepam include anterograde amnesia, confusion (especially pronounced in higher doses) and sedation. The elderly are more prone to adverse effects of diazepam, such as confusion, amnesia, ataxia, and hangover effects, as well as falls. Long-term use of benzodiazepines such as diazepam is associated with drug tolerance, benzodiazepine dependence, and benzodiazepine withdrawal syndrome. Like other benzodiazepines, diazepam can impair short-term memory and learning of new information. While benzodiazepine drugs such as diazepam can cause anterograde amnesia, they do not cause retrograde amnesia; information learned before using benzodiazepines is not impaired. Tolerance to the cognitively impairing effects of benzodiazepines does not tend to develop with long-term use, and the elderly are more sensitive to them. Additionally, after cessation of benzodiazepines, cognitive deficits may persist for at least six months; it is unclear whether these impairments take longer than six months to abate or if they are permanent. Benzodiazepines may also cause or worsen depression. Infusions or repeated intravenous injections of diazepam when managing seizures, for example, may lead to drug toxicity, including respiratory depression, sedation and hypotension. Drug tolerance may also develop to infusions of diazepam if it is given for longer than 24 hours. Sedatives and sleeping pills, including diazepam, have been associated with an increased risk of death.

In September 2020, the US Food and Drug Administration (FDA) required the boxed warning be updated for all benzodiazepine medicines to describe the risks of abuse, misuse, addiction, physical dependence, and withdrawal reactions consistently across all the medicines in the class.

Diazepam has a range of side effects common to most benzodiazepines, including:

  • Suppression of REM sleep and Slow wave sleep.
  • Impaired motor function.
    • Impaired coordination.
    • Impaired balance.
    • Dizziness.
  • Reflex tachycardia.

Less commonly, paradoxical side effects can occur, including nervousness, irritability, excitement, worsening of seizures, insomnia, muscle cramps, changes in libido, and in some cases, rage and violence. These adverse reactions are more likely to occur in children, the elderly, and individuals with a history of a substance use disorder, such as an alcohol use disorder, or a history of aggressive behaviour. In some people, diazepam may increase the propensity toward self-harming behaviours and, in extreme cases, may provoke suicidal tendencies or acts. Very rarely dystonia can occur.

Diazepam may impair the ability to drive vehicles or operate machinery. The impairment is worsened by consumption of alcohol, because both act as central nervous system depressants.

During the course of therapy, tolerance to the sedative effects usually develops, but not to the anxiolytic and myorelaxant effects.

Patients with severe attacks of apnoea during sleep may suffer respiratory depression (hypoventilation), leading to respiratory arrest and death.

Diazepam in doses of 5 mg or more causes significant deterioration in alertness performance combined with increased feelings of sleepiness.

Tolerance and Dependence

Diazepam, as with other benzodiazepine drugs, can cause tolerance, physical dependence, substance use disorder, and benzodiazepine withdrawal syndrome. Withdrawal from diazepam or other benzodiazepines often leads to withdrawal symptoms similar to those seen during barbiturate or alcohol withdrawal. The higher the dose and the longer the drug is taken, the greater the risk of experiencing unpleasant withdrawal symptoms.

Withdrawal symptoms can occur from standard dosages and also after short-term use, and can range from insomnia and anxiety to more serious symptoms, including seizures and psychosis. Withdrawal symptoms can sometimes resemble pre-existing conditions and be misdiagnosed. Diazepam may produce less intense withdrawal symptoms due to its long elimination half-life.

Benzodiazepine treatment should be discontinued as soon as possible by a slow and gradual dose reduction regimen. Tolerance develops to the therapeutic effects of benzodiazepines; for example tolerance occurs to the anticonvulsant effects and as a result benzodiazepines are not generally recommended for the long-term management of epilepsy. Dose increases may overcome the effects of tolerance, but tolerance may then develop to the higher dose and adverse effects may increase. The mechanism of tolerance to benzodiazepines includes uncoupling of receptor sites, alterations in gene expression, down-regulation of receptor sites, and desensitisation of receptor sites to the effect of GABA. About one-third of individuals who take benzodiazepines for longer than four weeks become dependent and experience withdrawal syndrome on cessation.

Differences in rates of withdrawal (50-100%) vary depending on the patient sample. For example, a random sample of long-term benzodiazepine users typically finds around 50% experience few or no withdrawal symptoms, with the other 50% experiencing notable withdrawal symptoms. Certain select patient groups show a higher rate of notable withdrawal symptoms, up to 100%.

Rebound anxiety, more severe than baseline anxiety, is also a common withdrawal symptom when discontinuing diazepam or other benzodiazepines. Diazepam is therefore only recommended for short-term therapy at the lowest possible dose owing to risks of severe withdrawal problems from low doses even after gradual reduction. The risk of pharmacological dependence on diazepam is significant, and patients experience symptoms of benzodiazepine withdrawal syndrome if it is taken for six weeks or longer. In humans, tolerance to the anticonvulsant effects of diazepam occurs frequently.

Dependence

Improper or excessive use of diazepam can lead to dependence. At a particularly high risk for diazepam misuse, substance use disorder or dependence are:

  • People with a history of a substance use disorder or substance dependence. Diazepam increases craving for alcohol in problem alcohol consumers. Diazepam also increases the volume of alcohol consumed by problem drinkers.
  • People with severe personality disorders, such as borderline personality disorder.

Patients from the aforementioned groups should be monitored very closely during therapy for signs of abuse and development of dependence. Therapy should be discontinued if any of these signs are noted, although if dependence has developed, therapy must still be discontinued gradually to avoid severe withdrawal symptoms. Long-term therapy in such instances is not recommended.

People suspected of being dependent on benzodiazepine drugs should be very gradually tapered off the drug. Withdrawals can be life-threatening, particularly when excessive doses have been taken for extended periods of time. Equal prudence should be used whether dependence has occurred in therapeutic or recreational contexts.

Diazepam is a good choice for tapering for those using high doses of other benzodiazepines since it has a long half-life thus withdrawal symptoms are tolerable. The process is very slow (usually from 14 to 28 weeks) but is considered safe when done appropriately.

Overdose

An individual who has consumed too much diazepam typically displays one or more of these symptoms in a period of approximately four hours immediately following a suspected overdose:

  • Drowsiness.
  • Mental confusion.
  • Hypotension.
  • Impaired motor functions.
    • Impaired reflexes.
    • Impaired coordination.
    • Impaired balance.
    • Dizziness.
  • Coma.

Although not usually fatal when taken alone, a diazepam overdose is considered a medical emergency and generally requires the immediate attention of medical personnel. The antidote for an overdose of diazepam (or any other benzodiazepine) is flumazenil (Anexate). This drug is only used in cases with severe respiratory depression or cardiovascular complications. Because flumazenil is a short-acting drug, and the effects of diazepam can last for days, several doses of flumazenil may be necessary. Artificial respiration and stabilization of cardiovascular functions may also be necessary. Though not routinely indicated, activated charcoal can be used for decontamination of the stomach following a diazepam overdose. Emesis is contraindicated. Dialysis is minimally effective. Hypotension may be treated with levarterenol or metaraminol.

The oral LD50 (lethal dose in 50% of the population) of diazepam is 720 mg/kg in mice and 1240 mg/kg in rats. D.J. Greenblatt and colleagues reported in 1978 on two patients who had taken 500 and 2000 mg of diazepam, respectively, went into moderately deep comas, and were discharged within 48 hours without having experienced any important complications, in spite of having high concentrations of diazepam and its metabolites desmethyldiazepam, oxazepam, and temazepam, according to samples taken in the hospital and as follow-up.

Overdoses of diazepam with alcohol, opiates or other depressants may be fatal.

Interactions

If diazepam is administered concomitantly with other drugs, attention should be paid to the possible pharmacological interactions. Particular care should be taken with drugs that potentiate the effects of diazepam, such as barbiturates, phenothiazines, opioids, and antidepressants.

Diazepam does not increase or decrease hepatic enzyme activity, and does not alter the metabolism of other compounds. No evidence would suggest diazepam alters its own metabolism with chronic administration.

Agents with an effect on hepatic cytochrome P450 pathways or conjugation can alter the rate of diazepam metabolism. These interactions would be expected to be most significant with long-term diazepam therapy, and their clinical significance is variable.

  • Diazepam increases the central depressive effects of alcohol, other hypnotics/sedatives (e.g. barbiturates), other muscle relaxants, certain antidepressants, sedative antihistamines, opioids, and antipsychotics, as well as anticonvulsants such as phenobarbital, phenytoin, and carbamazepine. The euphoriant effects of opioids may be increased, leading to increased risk of psychological dependence.
  • Cimetidine, omeprazole, oxcarbazepine, ticlopidine, topiramate, ketoconazole, itraconazole, disulfiram, fluvoxamine, isoniazid, erythromycin, probenecid, propranolol, imipramine, ciprofloxacin, fluoxetine, and valproic acid prolong the action of diazepam by inhibiting its elimination.
  • Alcohol in combination with diazepam may cause a synergistic enhancement of the hypotensive properties of benzodiazepines and alcohol.
  • Oral contraceptives significantly decrease the elimination of desmethyldiazepam, a major metabolite of diazepam.
  • Rifampin, phenytoin, carbamazepine, and phenobarbital increase the metabolism of diazepam, thus decreasing drug levels and effects. Dexamethasone and St John’s wort also increase the metabolism of diazepam.
  • Diazepam increases the serum levels of phenobarbital.
  • Nefazodone can cause increased blood levels of benzodiazepines.
  • Cisapride may enhance the absorption, and therefore the sedative activity, of diazepam.
  • Small doses of theophylline may inhibit the action of diazepam.
  • Diazepam may block the action of levodopa (used in the treatment of Parkinson’s disease).
  • Diazepam may alter digoxin serum concentrations.
  • Other drugs that may have interactions with diazepam include antipsychotics (e.g. chlorpromazine), MAO inhibitors, and ranitidine.
  • Because it acts on the GABA receptor, the herb valerian may produce an adverse effect.
  • Foods that acidify the urine can lead to faster absorption and elimination of diazepam, reducing drug levels and activity.
  • Foods that alkalinise the urine can lead to slower absorption and elimination of diazepam, increasing drug levels and activity.
  • Reports conflict as to whether food in general has any effects on the absorption and activity of orally administered diazepam.

Pharmacology

Diazepam is a long-acting “classical” benzodiazepine. Other classical benzodiazepines include chlordiazepoxide, clonazepam, lorazepam, oxazepam, nitrazepam, temazepam, flurazepam, bromazepam, and clorazepate. Diazepam has anticonvulsant properties. Benzodiazepines act via micromolar benzodiazepine binding sites as calcium channel blockers and significantly inhibit depolarisation-sensitive calcium uptake in rat nerve cell preparations.

Diazepam inhibits acetylcholine release in mouse hippocampal synaptosomes. This has been found by measuring sodium-dependent high-affinity choline uptake in mouse brain cells in vitro, after pretreatment of the mice with diazepam in vivo. This may play a role in explaining diazepam’s anticonvulsant properties.

Diazepam binds with high affinity to glial cells in animal cell cultures. Diazepam at high doses has been found to decrease histamine turnover in mouse brain via diazepam’s action at the benzodiazepine-GABA receptor complex. Diazepam also decreases prolactin release in rats.

Mechanism of Action

Benzodiazepines are positive allosteric modulators of the GABA type A receptors (GABAA). The GABAA receptors are ligand-gated chloride-selective ion channels that are activated by GABA, the major inhibitory neurotransmitter in the brain. Binding of benzodiazepines to this receptor complex promotes the binding of GABA, which in turn increases the total conduction of chloride ions across the neuronal cell membrane. This increased chloride ion influx hyperpolarises the neuron’s membrane potential. As a result, the difference between resting potential and threshold potential is increased and firing is less likely. As a result, the arousal of the cortical and limbic systems in the central nervous system is reduced.

The GABAA receptor is a heteromer composed of five subunits, the most common ones being two αs, two βs, and one γ (α2β2γ). For each subunit, many subtypes exist (α1–6, β1–3, and γ1–3). GABAA receptors containing the α1 subunit mediate the sedative, the anterograde amnesic, and partly the anticonvulsive effects of diazepam. GABAA receptors containing α2 mediate the anxiolytic actions and to a large degree the myorelaxant effects. GABAA receptors containing α3 and α5 also contribute to benzodiazepines myorelaxant actions, whereas GABAA receptors comprising the α5 subunit were shown to modulate the temporal and spatial memory effects of benzodiazepines. Diazepam is not the only drug to target these GABAA receptors. Drugs such as flumazenil also bind to GABAA to induce their effects.

Diazepam appears to act on areas of the limbic system, thalamus, and hypothalamus, inducing anxiolytic effects. Benzodiazepine drugs including diazepam increase the inhibitory processes in the cerebral cortex.

The anticonvulsant properties of diazepam and other benzodiazepines may be in part or entirely due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems limited by benzodiazepines’ effect of slowing recovery of sodium channels from inactivation.

The muscle relaxant properties of diazepam are produced via inhibition of polysynaptic pathways in the spinal cord.

Pharmacokinetics

Diazepam can be administered orally, intravenously (must be diluted, as it is painful and damaging to veins), intramuscularly (IM), or as a suppository.

The onset of action is one to five minutes for IV administration and 15-30 minutes for IM administration. The duration of diazepam’s peak pharmacological effects is 15 minutes to one hour for both routes of administration. The half-life of diazepam in general is 30-56 hours. Peak plasma levels occur between 30 and 90 minutes after oral administration and between 30 and 60 minutes after intramuscular administration; after rectal administration, peak plasma levels occur after 10 to 45 minutes. Diazepam is highly protein-bound, with 96 to 99% of the absorbed drug being protein-bound. The distribution half-life of diazepam is two to 13 minutes.

Diazepam is highly lipid-soluble, and is widely distributed throughout the body after administration. It easily crosses both the blood-brain barrier and the placenta, and is excreted into breast milk. After absorption, diazepam is redistributed into muscle and adipose tissue. Continual daily doses of diazepam quickly build to a high concentration in the body (mainly in adipose tissue), far in excess of the actual dose for any given day.

Diazepam is stored preferentially in some organs, including the heart. Absorption by any administered route and the risk of accumulation is significantly increased in the neonate, and withdrawal of diazepam during pregnancy and breast feeding is clinically justified.

Diazepam undergoes oxidative metabolism by demethylation (CYP 2C9, 2C19, 2B6, 3A4, and 3A5), hydroxylation (CYP 3A4 and 2C19) and glucuronidation in the liver as part of the cytochrome P450 enzyme system. It has several pharmacologically active metabolites. The main active metabolite of diazepam is desmethyldiazepam (also known as nordazepam or nordiazepam). Its other active metabolites include the minor active metabolites temazepam and oxazepam. These metabolites are conjugated with glucuronide, and are excreted primarily in the urine. Because of these active metabolites, the serum values of diazepam alone are not useful in predicting the effects of the drug. Diazepam has a biphasic half-life of about one to three days, and two to seven days for the active metabolite desmethyldiazepam. Most of the drug is metabolised; very little diazepam is excreted unchanged. The elimination half-life of diazepam and also the active metabolite desmethyldiazepam increases significantly in the elderly, which may result in prolonged action, as well as accumulation of the drug during repeated administration.

Physical and Chemical Properties

Diazepam is a 1,4-benzodiazepine. Diazepam occurs as solid white or yellow crystals with a melting point of 131.5 to 134.5 °C. It is odorless, and has a slightly bitter taste. The British Pharmacopoeia lists it as being very slightly soluble in water, soluble in alcohol, and freely soluble in chloroform. The United States Pharmacopoeia lists diazepam as soluble 1 in 16 ethyl alcohol, 1 in 2 of chloroform, 1 in 39 ether, and practically insoluble in water. The pH of diazepam is neutral (i.e., pH = 7). Due to additives such as benzoic acid/benzoate in the injectable form. Diazepam has a shelf life of five years for oral tablets and three years for IV/IM solutions. Diazepam should be stored at room temperature (15-30 °C). The solution for parenteral injection should be protected from light and kept from freezing. The oral forms should be stored in air-tight containers and protected from light.

Diazepam can absorb into plastics, so liquid preparations should not be kept in plastic bottles or syringes, etc. As such, it can leach into the plastic bags and tubing used for intravenous infusions. Absorption appears to depend on several factors, such as temperature, concentration, flow rates, and tube length. Diazepam should not be administered if a precipitate has formed and does not dissolve.

Detection in Body Fluids

Diazepam may be quantified in blood or plasma to confirm a diagnosis of poisoning in hospitalized patients, provide evidence in an impaired driving arrest, or to assist in a medicolegal death investigation. Blood or plasma diazepam concentrations are usually in a range of 0.1-1.0 mg/l in persons receiving the drug therapeutically. Most commercial immunoassays for the benzodiazepine class of drugs cross-react with diazepam, but confirmation and quantitation are usually performed using chromatographic techniques.

Society and Culture

Recreational Use

Diazepam is a medication with a high risk of misuse and can cause drug dependence. Urgent action by national governments has been recommended to improve prescribing patterns of benzodiazepines such as diazepam. A single dose of diazepam modulates the dopamine system in similar ways to how morphine and alcohol modulate the dopaminergic pathways. Between 50 and 64% of rats will self-administer diazepam. Diazepam has been shown to be able to substitute for the behavioural effects of barbiturates in a primate study. Diazepam has been found as an adulterant in heroin.

Diazepam drug misuse can occur either through recreational misuse where the drug is taken to achieve a high or when the drug is continued long term against medical advice.

Sometimes, it is used by stimulant users to “come down” and sleep and to help control the urge to binge. These users often escalate dosage from 2 to 25 times the therapeutic dose of 5 to 10 mg.

A large-scale study in the US, conducted by SAMHSA, using data from 2011, determined benzodiazepines were present in 28.7% of emergency department visits involving nonmedical use of pharmaceuticals. In this regard, benzodiazepines are second only to opiates, the study found in 39.2% of visits. About 29.3% of drug-related suicide attempts involve benzodiazepines, making them the most frequently represented class in drug-related suicide attempts. Males misuse benzodiazepines as commonly as females.

Benzodiazepines, including diazepam, nitrazepam, and flunitrazepam, account for the largest volume of forged drug prescriptions in Sweden, a total of 52% of drug forgeries being for benzodiazepines.

Diazepam was detected in 26% of cases of people suspected of driving under the influence of drugs in Sweden, and its active metabolite nordazepam was detected in 28% of cases. Other benzodiazepines and zolpidem and zopiclone also were found in high numbers. Many drivers had blood levels far exceeding the therapeutic dose range, suggesting a high degree of potential for misuse for benzodiazepines, zolpidem, and zopiclone. In Northern Ireland, in cases where drugs were detected in samples from impaired drivers who were not impaired by alcohol, benzodiazepines were found in 87% of cases. Diazepam was the most commonly detected benzodiazepine.

Legal Status

Diazepam is regulated in most countries as a prescription drug.

  • International: Diazepam is a Schedule IV controlled drug under the Convention on Psychotropic Substances.
  • UK: Classified as a controlled drug, listed under Schedule IV, Part I (CD Benz POM) of the Misuse of Drugs Regulations 2001, allowing possession with a valid prescription. The Misuse of Drugs Act 1971 makes it illegal to possess the drug without a prescription, and for such purposes it is classified as a Class C drug.
  • Germany: Classified as a prescription drug, or in high dosage as a restricted drug (Betäubungsmittelgesetz, Anlage III).
  • Australia: Diazepam is Schedule 4 substance under the Poisons Standard (June 2018). A schedule 4 drug is outlined in the Poisons Act 1964 as, “Substances, the use or supply of which should be by or on the order of persons permitted by State or Territory legislation to prescribe and should be available from a pharmacist on prescription.”
  • United States: Diazepam is controlled as a Schedule IV substance under the Controlled Substances Act of 1970.

Judicial Executions

The states of California and Florida offer diazepam to condemned inmates as a pre-execution sedative as part of their lethal injection program, although the state of California has not executed a prisoner since 2006. In August 2018, Nebraska used diazepam as part of the drug combination used to execute Carey Dean Moore, the first death row inmate executed in Nebraska in over 21 years.

Veterinary Uses

Diazepam is used as a short-term sedative and anxiolytic for cats and dogs, sometimes used as an appetite stimulant. It can also be used to stop seizures in dogs and cats.