What is the Rebound Effect?

Introduction

The rebound effect, or rebound phenomenon, is the emergence or re-emergence of symptoms that were either absent or controlled while taking a medication, but appear when that same medication is discontinued, or reduced in dosage.

In the case of re-emergence, the severity of the symptoms is often worse than pre-treatment levels.

Examples

Sedative Hypnotics

Rebound Insomnia

Rebound insomnia is insomnia that occurs following discontinuation of sedative substances taken to relieve primary insomnia. Regular use of these substances can cause a person to become dependent on its effects in order to fall asleep. Therefore, when a person has stopped taking the medication and is ‘rebounding’ from its effects, he or she may experience insomnia as a symptom of withdrawal. Occasionally, this insomnia may be worse than the insomnia the drug was intended to treat.

Common medicines known to cause this problem are eszopiclone, zolpidem, and anxiolytics such as benzodiazepines and which are prescribed to people having difficulties falling or staying asleep.

Rebound Depression

Depressive symptoms may appear to arise in patients previously free of such an illness.

Daytime Rebound

Rebound phenomena do not necessarily only occur on discontinuation of a prescribed dosage. For example, daytime rebound effects of anxiety, metallic taste, perceptual disturbances which are typical benzodiazepine withdrawal symptoms can occur the next day after a short-acting benzodiazepine hypnotic wears off. Another example is early morning rebound insomnia which may occur when a rapidly eliminated hypnotic wears off which leads to rebounding awakeness forcing the person to become wide awake before he or she has had a full night’s sleep. One drug which seems to be commonly associated with these problems is triazolam, due to its high potency and ultra short half life, but these effects can occur with other short-acting hypnotic drugs. Quazepam, due to its selectivity for type1 benzodiazepine receptors and long half-life, does not cause daytime anxiety rebound effects during treatment, showing that half-life is very important for determining whether a night-time hypnotic will cause next-day rebound withdrawal effects or not. Daytime rebound effects are not necessarily mild but can sometimes produce quite marked psychiatric and psychological disturbances.

Stimulants

Rebound effects from stimulants such as methylphenidate or dextroamphetamine include stimulant psychosis, depression and a return of ADHD symptoms but in a temporarily exaggerated form. Up to a third of ADHD children experience a rebound effect when methylphenidate is withdrawn.

Antidepressants

Many antidepressants, including SSRIs, can cause rebound depression, panic attacks, anxiety, and insomnia when discontinued.

Antipsychotics

Sudden and severe emergence or re-emergence of psychosis may appear when antipsychotics are switched or discontinued too rapidly.

Alpha-2 Adrenergic Agents

Rebound hypertension, above pre-treatment level, was observed after clonidine, and guanfacine discontinuation.

Others

Other Rebound Effects

An example is the use of highly potent corticosteroids, such as clobetasol for psoriasis. Abrupt withdrawal can cause a much more severe case of the psoriasis to develop. Therefore, withdrawal should be gradual, diluting the medication with lotion perhaps, until very little actual medication is being applied.

Another example of pharmaceutical rebound is a rebound headache from painkillers when the dose is lowered, the medication wears off, or the drug is abruptly discontinued.

Continuous usage of topical decongestants (nasal sprays) can lead to constant nasal congestion, known as rhinitis medicamentosa.

What is a Paradoxical Reaction?

Introduction

A paradoxical reaction or paradoxical effect is an effect of a chemical substance, typically a medical drug, that is opposite to what would usually be expected. An example of a paradoxical reaction is pain caused by a pain relief medication.

Paradoxical reactions are more commonly observed in people with attention deficit hyperactivity disorder (ADHD).

Substances

Amphetamines

Amphetamines are a class of psychoactive drugs that are stimulants. Paradoxical drowsiness can sometimes occur in adults.

Antibiotics

The paradoxical effect or Eagle effect (named after H. Eagle who first described it) refers to an observation of an increase in survivors, seen when testing the activity of an antimicrobial agent. Initially when an antibiotic agent is added to a culture media, the number of bacteria that survive drops, as one would expect. But after increasing the concentration beyond a certain point, the number of bacteria that survive, paradoxically, increases.

Antidepressants

In rare cases antidepressants can make users obsessively violent or have suicidal compulsions, which is in marked contrast to their intended effect. This can be regarded as a paradoxical reaction but, especially in the case of suicide, may in at least some cases be merely due to differing rates of effect with respect to different symptoms of depression: If generalised overinhibition of a patient’s actions enters remission before that patient’s dysphoria does and if the patient was already suicidal but too depressed to act on their inclinations, the patient may find themselves in the situation of being both still dysphoric enough to want to commit suicide but newly free of endogenous barriers against doing so. Children and adolescents are more sensitive to paradoxical reactions of self-harm and suicidal ideation while taking antidepressants but cases are still very rare.

Antipsychotics

Chlorpromazine, an antipsychotic and antiemetic drug, which is classed as a “major” tranquilizer may cause paradoxical effects such as agitation, excitement, insomnia, bizarre dreams, aggravation of psychotic symptoms and toxic confusional states.

Barbiturates

Phenobarbital can cause hyperactivity in children. This may follow after a small dose of 20 mg, on condition of no phenobarbital administered in previous days. Prerequisity for this reaction is a continued sense of tension. The mechanism of action is not known, but it may be started by the anxiolytic action of the phenobarbital.

Benzodiazepines

Benzodiazepines, a class of psychoactive drugs called the “minor” tranquilisers, have varying hypnotic, sedative, anxiolytic, anticonvulsant, and muscle relaxing properties, but they may create the exact opposite effects. Susceptible individuals may respond to benzodiazepine treatment with an increase in anxiety, aggressiveness, agitation, confusion, disinhibition, loss of impulse control, talkativeness, violent behaviour, and even convulsions. Paradoxical adverse effects may even lead to criminal behaviour. Severe behavioural changes resulting from benzodiazepines have been reported including mania, schizophrenia, anger, impulsivity, and hypomania.

Paradoxical rage reactions due to benzodiazepines occur as a result of an altered level of consciousness, which generates automatic behaviours, anterograde amnesia and uninhibited aggression. These aggressive reactions may be caused by a disinhibiting serotonergic mechanism.

Paradoxical effects of benzodiazepines appear to be dose related, that is, likelier to occur with higher doses.

In a letter to the British Medical Journal, it was reported that a high proportion of parents referred for actual or threatened child abuse were taking medication at the time, often a combination of benzodiazepines and tricyclic antidepressants. Many mothers described that instead of feeling less anxious or depressed, they became more hostile and openly aggressive towards the child as well as to other family members while consuming tranquilizers. The author warned that environmental or social stresses such as difficulty coping with a crying baby combined with the effects of tranquilisers may precipitate a child abuse event.

Self aggression has been reported and also demonstrated in laboratory conditions in a clinical study. Diazepam was found to increase people’s willingness to harm themselves.

Benzodiazepines can sometimes cause a paradoxical worsening of EEG readings in patients with seizure disorders.

Barbiturates such as pentobarbital have been shown to cause paradoxical hyperactivity in an estimated 1% of children, who display symptoms similar to the hyperactive-impulsive subtype of attention deficit hyperactivity disorder. Intravenous caffeine administration can return these patients’ behaviour to baseline levels.

Causes

The mechanism of a paradoxical reaction has as yet (2019) not been fully clarified, in no small part due to the fact that signal transfer of single neurons in subcortical areas of the human brain is usually not accessible.

There are, however, multiple indications that paradoxical reactions upon – for example – benzodiazepines, barbiturates, inhalational anaesthetics, propofol, neurosteroids, and alcohol are associated with structural deviations of GABAA receptors. The combination of the five subunits of the receptor (see image) can be altered in such a way that for example the receptor’s response to GABA remains unchanged but the response to one of the named substances is dramatically different from the normal one.

There are estimates that about 2-3% of the general population may suffer from serious emotional disorders due to such receptor deviations, with up to 20% suffering from moderate disorders of this kind. It is generally assumed that the receptor alterations are, at least partly, due to genetic and also epigenetic deviations. There are indication that the latter may be triggered by, among other factors, social stress or occupational burnout.

What are the Adverse Effects of Olanzpine?

Introduction

Below is a list of the adverse effects of the antipsychotic olanzapine, sorted by frequency of occurrence.

Very Common

Very common adverse effects of olanzapine, occurring more than 10%, include:

  • Weight gain (dose-dependent).
    • Weight gain of over 7% of a person’s initial body weight prior to treatment is in this category of very common too with some estimates of its incidence putting it at around 40.6%.
    • This adverse effect is most likely the result of its potent 5-HT2C receptor and H1 receptor blockade (or more specifically inverse agonism).
  • Somnolence (dose-dependent).
    • Tends to produce a moderate amount of sedation, less than clozapine and chlorpromazine but more than aripiprazole, amisulpride, paliperidone and sertindole and approximately that of quetiapine and risperidone.
  • Hyperprolactinemia elevated blood levels of the hormone, prolactin.
    • Prolactin is one of the hormones that plays a key role in lactation. Long-term uncontrolled hyperprolactinaemia can lead to bone demineralisation (osteoporosis) and an increased risk of fractures (breaks).
    • It tends to produce hyperlacticaemia less often than risperidone, paliperidone and the typical antipsychotics but more often than quetiapine and clozapine.
  • Hypertriglyceridaemia (elevated blood triglycerides).
  • Hypercholesterolaemia (elevated blood cholesterol levels).
  • Hyperglycaemia (elevated blood glucose levels).
    • This may be the result of olanzapine’s inhibitory effects on the M3 receptor which regulates the release of insulin from the pancreas.
  • Brain shrinkage (dose dependent).

Common

Common adverse effects of olanzapine, occurring from 1-10%, include:

  • Gynecomastia.
  • Extrapyramidal symptoms (EPS) (dose-dependent).
    • Tends to produce less extrapyramidal side effects than typical antipsychotics but more extrapyramidal side effects than sertindole, clozapine and quetiapine.
  • Mild and transient constipation and xerostomia (dry mouth).
  • Dizziness.
  • Weight gain of over 15% of one’s initial body weight.
    • Is reported to occur in approximately 7.1% of patients.
  • Glucosuria (glucose in the urine).
    • This is a consequence of hyperglycaemia.
  • Accidental injury.
  • Insomnia.
  • Orthostatic hypotension (a drop in blood pressure that occurs upon standing up).
  • Transient, asymptomatic elevations of hepatic aminotransferases (ALT, AST), especially in early treatment.
    • ALT & AST are liver enzymes which are often tested for as a measure of liver function.
  • Dyspepsia (indigestion).
  • Erectile dysfunction.
    • This is most likely the result of hyperprolactinaemia.
  • Decreased libido.
    • This is most likely the result of hyperprolactinaemia.
  • Rash.
  • Asthenia (weakness).
  • Fatigue.
  • Oedema the accumulation of fluid in the tissues of the body leading to swelling.
  • Akathisia an inner sense of restlessness that presents itself with the inability to stay still.
  • Parkinsonism tremor, muscle rigidity, reduced ability to move and being unstable on one’s feet.
  • Dyskinesia abnormal, involuntary, repetitive, and pointless movements.
  • Vomiting.
  • Coma.
  • Cardiac arrest.

Uncommon

Uncommon adverse effects of olanzapine, occurring from 0.1-1%, include:

  • Leukopenia a comparatively low white blood cell (the cells that defend the body from foreign invaders) count.
  • Neutropaenia a reduced neutrophil (the white blood cells that kill bacteria) count.
  • Bradycardia (low heart rate).
  • QTc interval prolongation (an abnormality in the electrical cycle of the heart).
  • Photosensitivity reaction.
  • Alopecia (hair loss).
  • Urinary incontinence.
  • Urinary retention, the inability to urinate.
  • Amenorrhea the cessation of menses (a woman’s menstrual cycles).
    • This is a complication of hyperprolactinaemia.
  • Breast enlargement (in either sex).
    • This is a complication of hyperprolactinaemia.
  • Galactorrhoea (expulsion of milk from the breasts that’s unrelated to pregnancy or lactation).
    • Most likely the result of hyperprolactinaemia.
  • High creatine phosphokinase (an abnormal laboratory finding).
  • Increased total bilirubin (a by product of the breakdown of haem – a part of blood cells that is used to carry oxygen).
    • In most people this is an indication of impaired liver function.
  • Abdominal pain.

Rare

Rare adverse effects of olanzapine, occurring from 0.01-0.1%, include:

  • Hepatitis.
  • Rash.
  • Seizures.
  • Glaucoma.
  • Blindness.

Very Rare (But Not Necessarily Causally Related)

Very rare adverse effects of olanzapine, occurring less than 0.01%, include:

  • Agranulocytosis, a potentially fatal drop in white blood cell count, basically an exaggerated form of leukopenia.
  • Thrombocytopaenia.
    • A drop in blood platelet counts which are involved in blood clotting.
  • Thromboembolism (blood clots; including pulmonary embolism and deep vein thrombosis).
  • Rhabdomyolysis (breakdown of muscle tissue leading to the release of myoglobin into the bloodstream which in turn damages the kidneys).
  • Alkaline phosphatase increased (an abnormal laboratory parameter).
  • Priapism (a painful and enduring erection).
  • Urinary hesitation.
  • Pancreatitis, swelling of the pancreas which supplies the body with insulin.
  • Neuroleptic malignant syndrome a potentially fatal complication of antipsychotic drug treatment.
    • Presents with hyperthermia, tremor, tachycardia (high heart rate), mental status change (e.g. confusion), etc.
  • Jaundice, which is basically when the body’s ability to clear a by product (called bilirubin) of the breakdown of an essential component of the blood called haem, is impaired leading to yellow discolouration of the skin, eyes and mucous membranes.
  • Diabetic coma.
  • Diabetic ketoacidosis.
    • Type II diabetes mellitus is basically where the body cannot effectively utilise sugars to produce energy due to the fact that its cells have become unresponsive to the hormone, insulin, which allows cells to utilise sugars for energy.
    • This in turn forces the body to burn fats for energy and fats require conversion to ketone bodies in order to be utilised by the cells of the body as an energy source.
    • The ketone bodies are acidic hence when the body is entirely reliant on these ketone bodies for energy the levels in the blood reaches a point where it overwhelms the body’s natural mechanisms to keep blood pH (a measure of acidity) within a safe range, leading to the blood becoming acidic which is potentially damaging to the tissues of the body due to the ability of acidic environments to denature the proteins of the body.
  • Anaphylactic reaction a potentially life-threatening allergic reaction.
  • Sudden cardiac death.

What is Midazolam?

Introduction

Midazolam, sold under the brand name Versed, among others, is a benzodiazepine medication used for anaesthesia, procedural sedation, trouble sleeping, and severe agitation.

It works by inducing sleepiness, decreasing anxiety, and causing a loss of ability to create new memories. It is also useful for the treatment of seizures. Midazolam can be given by mouth, intravenously, or injection into a muscle, by spraying into the nose, or through the cheek. When given intravenously, it typically begins working within five minutes; when injected into a muscle, it can take fifteen minutes to begin working. Effects last for between one and six hours.

Side effects can include a decrease in efforts to breathe, low blood pressure, and sleepiness. Tolerance to its effects and withdrawal syndrome may occur following long-term use. Paradoxical effects, such as increased activity, can occur especially in children and older people. There is evidence of risk when used during pregnancy but no evidence of harm with a single dose during breastfeeding. It belongs to the benzodiazepine class of drugs and works by increasing the activity of the GABA neurotransmitter in the brain.

Midazolam was patented in 1974 and came into medical use in 1982. It is on the World Health Organisation’s List of Essential Medicines. Midazolam is available as a generic medication. In many countries, it is a controlled substance.

Brief History

Midazolam is among about 35 benzodiazepines currently used medically, and was synthesized in 1975 by Walser and Fryer at Hoffmann-LaRoche, Inc in the United States. Owing to its water solubility, it was found to be less likely to cause thrombophlebitis than similar drugs. The anticonvulsant properties of midazolam were studied in the late 1970s, but not until the 1990s did it emerge as an effective treatment for convulsive status epilepticus. As of 2010, it is the most commonly used benzodiazepine in anaesthetic medicine. In acute medicine, midazolam has become more popular than other benzodiazepines, such as lorazepam and diazepam, because it is shorter lasting, is more potent, and causes less pain at the injection site. Midazolam is also becoming increasingly popular in veterinary medicine due to its water solubility. In 2018 it was revealed the CIA considered using Midazolam as a “truth serum” on terrorist suspects in project “Medication”.

Medical Uses

Seizures

Midazolam is sometimes used for the acute management of seizures. Long-term use for the management of epilepsy is not recommended due to the significant risk of tolerance (which renders midazolam and other benzodiazepines ineffective) and the significant side effect of sedation. A benefit of midazolam is that in children it can be given in the cheek or in the nose for acute seizures, including status epilepticus. Midazolam is effective for status epilepticus that has not improved following other treatments or when intravenous access cannot be obtained, and has advantages of being water-soluble, having a rapid onset of action and not causing metabolic acidosis from the propylene glycol vehicle (which is not required due to its solubility in water), which occurs with other benzodiazepines.

Drawbacks include a high degree of breakthrough seizures – due to the short half-life of midazolam – in over 50% of people treated, as well as treatment failure in 14-18% of people with refractory status epilepticus. Tolerance develops rapidly to the anticonvulsant effect, and the dose may need to be increased by several times to maintain anticonvulsant therapeutic effects. With prolonged use, tolerance and tachyphylaxis can occur and the elimination half-life may increase, up to days. There is evidence buccal and intranasal midazolam is easier to administer and more effective than rectally administered diazepam in the emergency control of seizures.

Procedural Sedation

Intravenous midazolam is indicated for procedural sedation (often in combination with an opioid, such as fentanyl), for preoperative sedation, for the induction of general anaesthesia, and for sedation of people who are ventilated in critical care units. Midazolam is superior to diazepam in impairing memory of endoscopy procedures, but propofol has a quicker recovery time and a better memory-impairing effect. It is the most popular benzodiazepine in the intensive care unit (ICU) because of its short elimination half-life, combined with its water solubility and its suitability for continuous infusion. However, for long-term sedation, lorazepam is preferred due to its long duration of action, and propofol has advantages over midazolam when used in the ICU for sedation, such as shorter weaning time and earlier tracheal extubation.

Midazolam is sometimes used in neonatal intensive care units. When used, additional caution is required in newborns; midazolam should not be used for longer than 72 hours due to risks of tachyphylaxis, and the possibility of development of a benzodiazepine withdrawal syndrome, as well as neurological complications. Bolus injections should be avoided due to the increased risk of cardiovascular depression, as well as neurological complications. Midazolam is also sometimes used in newborns who are receiving mechanical ventilation, although morphine is preferred, owing to its better safety profile for this indication.

Sedation using midazolam can be used to relieve anxiety and manage behaviour in children undergoing dental treatment.

Agitation

Midazolam, in combination with an antipsychotic drug, is indicated for the acute management of schizophrenia when it is associated with aggressive or out-of-control behaviour.

End of Life Care

In the final stages of end-of-life care, midazolam is routinely used at low doses via subcutaneous injection to help with agitation, myoclonus, restlessness or anxiety in the last hours or days of life. At higher doses during the last weeks of life, midazolam is considered a first line agent in palliative continuous deep sedation therapy when it is necessary to alleviate intolerable suffering not responsive to other treatments, but the need for this is rare.

Contraindications

Benzodiazepines require special precaution if used in the elderly, during pregnancy, in children, in alcohol- or other drug-dependent individuals or those with comorbid psychiatric disorders.[31] Additional caution is required in critically ill patients, as accumulation of midazolam and its active metabolites may occur.[32] Kidney or liver impairments may slow down the elimination of midazolam leading to prolonged and enhanced effects.[33][34] Contraindications include hypersensitivity, acute narrow-angle glaucoma, shock, hypotension, or head injury. Most are relative contraindications.

Side Effects

Refer to Long-term Effects of Benzodiazepine Use.

Side effects of midazolam in the elderly are listed above. People experiencing amnesia as a side effect of midazolam are generally unaware their memory is impaired, unless they had previously known it as a side effect.

Long-term use of benzodiazepines has been associated with long-lasting deficits of memory, and show only partial recovery six months after stopping benzodiazepines. It is unclear whether full recovery occurs after longer periods of abstinence. Benzodiazepines can cause or worsen depression. Paradoxical excitement occasionally occurs with benzodiazepines, including a worsening of seizures. Children and elderly individuals or those with a history of excessive alcohol use and individuals with a history of aggressive behaviour or anger are at increased risk of paradoxical effects. Paradoxical reactions are particularly associated with intravenous administration. After night-time administration of midazolam, residual ‘hangover’ effects, such as sleepiness and impaired psychomotor and cognitive functions, may persist into the next day. This may impair the ability of users to drive safely and may increase the risk of falls and hip fractures. Sedation, respiratory depression and hypotension due to a reduction in systematic vascular resistance, and an increase in heart rate can occur. If intravenous midazolam is given too quickly, hypotension may occur. A “midazolam infusion syndrome” may result from high doses, and is characterised by delayed arousal hours to days after discontinuation of midazolam, and may lead to an increase in the length of ventilatory support needed.

In susceptible individuals, midazolam has been known to cause a paradoxical reaction, a well-documented complication with benzodiazepines. When this occurs, the individual may experience anxiety, involuntary movements, aggressive or violent behaviour, uncontrollable crying or verbalisation, and other similar effects. This seems to be related to the altered state of consciousness or disinhibition produced by the drug. Paradoxical behaviour is often not recalled by the patient due to the amnesia-producing properties of the drug. In extreme situations, flumazenil can be administered to inhibit or reverse the effects of midazolam. Antipsychotic medications, such as haloperidol, have also been used for this purpose.

Midazolam is known to cause respiratory depression. In healthy humans, 0.15 mg/kg of midazolam may cause respiratory depression, which is postulated to be a central nervous system (CNS) effect. When midazolam is administered in combination with fentanyl, the incidence of hypoxemia or apnoea becomes more likely.

Although the incidence of respiratory depression/arrest is low (0.1-0.5%) when midazolam is administered alone at normal doses, the concomitant use with CNS acting drugs, mainly analgesic opiates, may increase the possibility of hypotension, respiratory depression, respiratory arrest, and death, even at therapeutic doses. Potential drug interactions involving at least one CNS depressant were observed for 84% of midazolam users who were subsequently required to receive the benzodiazepine antagonist flumazenil. Therefore, efforts directed toward monitoring drug interactions and preventing injuries from midazolam administration are expected to have a substantial impact on the safe use of this drug

Pregnancy and Breastfeeding

Midazolam, when taken during the third trimester of pregnancy, may cause risk to the neonate, including benzodiazepine withdrawal syndrome, with possible symptoms including hypotonia, apnoeic spells, cyanosis, and impaired metabolic responses to cold stress. Symptoms of hypotonia and the neonatal benzodiazepine withdrawal syndrome have been reported to persist from hours to months after birth. Other neonatal withdrawal symptoms include hyperexcitability, tremor, and gastrointestinal upset (diarrhoea or vomiting). Breastfeeding by mothers using midazolam is not recommended.

Elderly

Additional caution is required in the elderly, as they are more sensitive to the pharmacological effects of benzodiazepines, metabolise them more slowly, and are more prone to adverse effects, including drowsiness, amnesia (especially anterograde amnesia), ataxia, hangover effects, confusion, and falls.

Tolerance, Dependence, and Withdrawal

A benzodiazepine dependence occurs in about one-third of individuals who are treated with benzodiazepines for longer than 4 weeks, which typically results in tolerance and benzodiazepine withdrawal syndrome when the dose is reduced too rapidly. Midazolam infusions may induce tolerance and a withdrawal syndrome in a matter of days. The risk factors for dependence include dependent personality, use of a benzodiazepine that is short-acting, high potency and long-term use of benzodiazepines. Withdrawal symptoms from midazolam can range from insomnia and anxiety to seizures and psychosis. Withdrawal symptoms can sometimes resemble a person’s underlying condition. Gradual reduction of midazolam after regular use can minimise withdrawal and rebound effects. Tolerance and the resultant withdrawal syndrome may be due to receptor down-regulation and GABAA receptor alterations in gene expression, which causes long-term changes in the function of the GABAergic neuronal system.

Chronic users of benzodiazepine medication who are given midazolam experience reduced therapeutic effects of midazolam, due to tolerance to benzodiazepines. Prolonged infusions with midazolam results in the development of tolerance; if midazolam is given for a few days or more a withdrawal syndrome can occur. Therefore, preventing a withdrawal syndrome requires that a prolonged infusion be gradually withdrawn, and sometimes, continued tapering of dose with an oral long-acting benzodiazepine such as clorazepate dipotassium. When signs of tolerance to midazolam occur during intensive care unit sedation the addition of an opioid or propofol is recommended. Withdrawal symptoms can include irritability, abnormal reflexes, tremors, clonus, hypertonicity, delirium and seizures, nausea, vomiting, diarrhoea, tachycardia, hypertension, and tachypnoea. In those with significant dependence, sudden discontinuation may result in withdrawal symptoms such as status epilepticus that may be fatal.

Overdose

Refer to Benzodiazepine Overdose.

A midazolam overdose is considered a medical emergency and generally requires the immediate attention of medical personnel. Benzodiazepine overdose in healthy individuals is rarely life-threatening with proper medical support; however, the toxicity of benzodiazepines increases when they are combined with other CNS depressants such as alcohol, opioids, or tricyclic antidepressants. The toxicity of benzodiazepine overdose and risk of death is also increased in the elderly and those with obstructive pulmonary disease or when used intravenously. Treatment is supportive; activated charcoal can be used within an hour of the overdose. The antidote for an overdose of midazolam (or any other benzodiazepine) is flumazenil. While effective in reversing the effects of benzodiazepines it is not used in most cases as it may trigger seizures in mixed overdoses and benzodiazepine dependent individuals.

Symptoms of midazolam overdose can include:

  • Ataxia.
  • Dysarthria.
  • Nystagmus.
  • Slurred speech.
  • Somnolence (difficulty staying awake).
  • Mental confusion.
  • Hypotension.
  • Respiratory arrest.
  • Vasomotor collapse.
  • Impaired motor functions.
    • Impaired reflexes.
    • Impaired coordination.
    • Impaired balance.
  • Dizziness.
  • Coma.
  • Death.

Detection in Body Fluids

Concentrations of midazolam or its major metabolite, 1-hydroxymidazolam glucuronide, may be measured in plasma, serum, or whole blood to monitor for safety in those receiving the drug therapeutically, to confirm a diagnosis of poisoning in hospitalised patients, or to assist in a forensic investigation of a case of fatal overdosage. Patients with renal dysfunction may exhibit prolongation of elimination half-life for both the parent drug and its active metabolite, with accumulation of these two substances in the bloodstream and the appearance of adverse depressant effects.

Interactions

Protease inhibitors, nefazodone, sertraline, grapefruit, fluoxetine, erythromycin, diltiazem, clarithromycin inhibit the metabolism of midazolam, leading to a prolonged action. St John’s wort, rifapentine, rifampin, rifabutin, phenytoin enhance the metabolism of midazolam leading to a reduced action. Sedating antidepressants, antiepileptic drugs such as phenobarbital, phenytoin and carbamazepine, sedative antihistamines, opioids, antipsychotics and alcohol enhance the sedative effects of midazolam. Midazolam is metabolised almost completely by cytochrome P450-3A4. Atorvastatin administration along with midazolam results in a reduced elimination rate of midazolam. St John’s wort decreases the blood levels of midazolam. Grapefruit juice reduces intestinal 3A4 and results in less metabolism and higher plasma concentrations.

Pharmacology

Midazolam is a short-acting benzodiazepine in adults with an elimination half-life of 1.5-2.5 hours. In the elderly, as well as young children and adolescents, the elimination half-life is longer. Midazolam is metabolised into an active metabolite alpha1-hydroxymidazolam. Age-related deficits, renal and liver status affect the pharmacokinetic factors of midazolam as well as its active metabolite. However, the active metabolite of midazolam is minor and contributes to only 10% of biological activity of midazolam. Midazolam is poorly absorbed orally, with only 50% of the drug reaching the bloodstream. Midazolam is metabolised by cytochrome P450 (CYP) enzymes and by glucuronide conjugation. The therapeutic as well as adverse effects of midazolam are due to its effects on the GABAA receptors; midazolam does not activate GABAA receptors directly but, as with other benzodiazepines, it enhances the effect of the neurotransmitter GABA on the GABAA receptors (↑ frequency of Cl− channel opening) resulting in neural inhibition. Almost all of the properties can be explained by the actions of benzodiazepines on GABAA receptors. This results in the following pharmacological properties being produced: sedation, induction of sleep, reduction in anxiety, anterograde amnesia, muscle relaxation and anticonvulsant effects.

Society and Culture

Cost

Midazolam is available as a generic medication.

Availability

Midazolam is available in the United States as a syrup or as an injectable solution.

Dormicum brand midazolam is marketed by Roche as white, oval, 7.5-mg tablets in boxes of two or three blister strips of 10 tablets, and as blue, oval, 15-mg tablets in boxes of two (Dormonid 3x) blister strips of 10 tablets. The tablets are imprinted with “Roche” on one side and the dose of the tablet on the other side. Dormicum is also available as 1-, 3-, and 10-ml ampoules at a concentration of 5 mg/ml. Another manufacturer, Novell Pharmaceutical Laboratories, makes it available as Miloz in 3- and 5-ml ampoules. Midazolam is the only water-soluble benzodiazepine available. Another maker is Roxane Laboratories; the product in an oral solution, Midazolam HCl Syrup, 2 mg/ml clear, in a red to purplish-red syrup, cherry in flavour. It becomes soluble when the injectable solution is buffered to a pH of 2.9-3.7. Midazolam is also available in liquid form. It can be administered intramuscularly, intravenously, intrathecally, intranasally, buccally, or orally.

Legal Status

In the Netherlands, midazolam is a List II drug of the Opium Law. Midazolam is a Schedule IV drug under the Convention on Psychotropic Substances. In the United Kingdom, midazolam is a Schedule 3/Class C controlled drug. In the United States, midazolam (DEA number 2884) is on the Schedule IV list of the Controlled Substances Act as a non-narcotic agent with low potential for abuse.

Marketing Authorisation

In 2011, the European Medicines Agency (EMA) granted a marketing authorisation for a buccal application form of midazolam, sold under the trade name Buccolam. Buccolam was approved for the treatment of prolonged, acute, convulsive seizures in people from three months to less than 18 years of age. This was the first application of a paediatric-use marketing authorisation.

Use in Executions

The drug has been introduced for use in executions by lethal injection in certain jurisdictions in the United States in combination with other drugs. It was introduced to replace pentobarbital after the latter’s manufacturer disallowed that drug’s use for executions. Midazolam acts as a sedative to render the condemned prisoner unconscious, at which time vecuronium bromide and potassium chloride are administered, stopping the prisoner’s breathing and heart, respectively.

Midazolam has been used as part of a three-drug cocktail, with vecuronium bromide and potassium chloride in Florida and Oklahoma prisons. Midazolam has also been used along with hydromorphone in a two-drug protocol in Ohio and Arizona.

The usage of midazolam in executions became controversial after condemned inmate Clayton Lockett apparently regained consciousness and started speaking midway through his 2014 execution when the state of Oklahoma attempted to execute him with an untested three-drug lethal injection combination using 100 mg of midazolam. Prison officials reportedly discussed taking him to a hospital before he was pronounced dead of a heart attack 40 minutes after the execution began. An observing doctor stated that Lockett’s vein had ruptured. It is not clear which drug or drugs caused his death or what quantities of vecuronium bromide and potassium chloride were released before the execution was cancelled.

Notable Incidents

The state of Florida used midazolam to execute William Frederick Happ in October 2013.

The state of Ohio used midazolam in the execution of Dennis McGuire in January 2014; it took McGuire 24 minutes to die after the procedure started, and he gasped and appeared to be choking during that time, leading to questions about the dosing and timing of the drug administration, as well as the choice of drugs.

The execution of Ronald Bert Smith in the state of Alabama on 08 December 2016, “went awry soon after (midazolam) was administered” again putting the effectiveness of the drug in question.

In October 2016, the state of Ohio announced that it would resume executions in January 2017, using a formulation of midazolam, vecuronium bromide, potassium chloride, but this was blocked by a Federal judge. On 26 July 2017, Ronald Phillips was executed with a three-drug cocktail including midazolam after the Supreme Court refused to grant a stay.[86] Prior to this, the last execution in Ohio had been that of Dennis McGuire. Murderer Gary Otte’s lawyers unsuccessfully challenged his Ohio execution, arguing that midazolam might not protect him from serious pain when the other drugs are administered. He died without incident in about 14 minutes on 13 September 2017.

On 24 April 2017, the state of Arkansas carried out a double-execution of Jack Harold Jones, 52, and Marcel Williams, 46. The state of Arkansas attempted to execute eight people before its supply of midazolam expired on 30 April 2017. Two of them were granted a stay of execution, and another, Ledell T. Lee, 51, was executed on 20 April 2017.

Legal Challenges

In Glossip v. Gross, attorneys for three Oklahoma inmates argued that midazolam could not achieve the level of unconsciousness required for surgery, meaning severe pain and suffering was likely. They argued that midazolam was cruel and unusual punishment and thus contrary to the Eighth Amendment to the United States Constitution. In June 2015, the US Supreme Court ruled that they had failed to prove that midazolam was cruel and unusual when compared to known, available alternatives.

The state of Nevada is also known to use midazolam in execution procedures. In July 2018, one of the manufacturers accused state officials of obtaining the medication under false pretences. This incident was the first time a drug company successfully, though temporarily, halted an execution. A previous attempt in 2017, to halt an execution in the state of Arizona by another drug manufacturer was not successful.

What are the Effects of Long-Term Benzodiazepine Use?

Introduction

The effects of long-term benzodiazepine use include drug dependence and neurotoxicity as well as the possibility of adverse effects on cognitive function, physical health, and mental health.

Long term use is sometimes described as use not shorter than three months. Benzodiazepines are generally effective when used therapeutically in the short term, but even then the risk of dependency can be significantly high. There are significant physical, mental and social risks associated with the long-term use of benzodiazepines. Although anxiety can temporarily increase as a withdrawal symptom, there is evidence that a reduction or withdrawal from benzodiazepines can lead in the long run to a reduction of anxiety symptoms. Due to these increasing physical and mental symptoms from long-term use of benzodiazepines, slow withdrawal is recommended for long-term users. Not everyone, however, experiences problems with long-term use.

Some of the symptoms that could possibly occur as a result of a withdrawal from benzodiazepines after long-term use include emotional clouding, flu-like symptoms, suicide, nausea, headaches, dizziness, irritability, lethargy, sleep problems, memory impairment, personality changes, aggression, depression, social deterioration as well as employment difficulties, while others never have any side effects from long-term benzodiazepine use. Abruptly or rapidly stopping benzodiazepines can be dangerous; when withdrawing a gradual reduction in dosage is recommended, under professional supervision.

While benzodiazepines are highly effective in the short term, adverse effects associated with long-term use, including impaired cognitive abilities, memory problems, mood swings, and overdoses when combined with other drugs, may make the risk-benefit ratio unfavourable. In addition, benzodiazepines have reinforcing properties in some individuals and thus are considered to be addictive drugs, especially in individuals that have a “drug-seeking” behaviour; further, a physical dependence can develop after a few weeks or months of use. Many of these adverse effects associated with long-term use of benzodiazepines begin to show improvements three to six months after withdrawal.

Other concerns about the effects associated with long-term benzodiazepine use, in some, include dose escalation, benzodiazepine use disorder, tolerance and benzodiazepine dependence and benzodiazepine withdrawal problems. Both physiological tolerance and dependence can be associated with worsening the adverse effects associated with benzodiazepines. Increased risk of death has been associated with long-term use of benzodiazepines in several studies; however, other studies have not found increased mortality. Due to conflicting findings in studies regarding benzodiazepines and increased risks of death including from cancer, further research in long-term use of benzodiazepines and mortality risk has been recommended; most of the available research has been conducted in prescribed users, even less is known about illicit misusers. The long-term use of benzodiazepines is controversial and has generated significant debate within the medical profession. Views on the nature and severity of problems with long-term use of benzodiazepines differ from expert to expert and even from country to country; some experts even question whether there is any problem with the long-term use of benzodiazepines.

Brief History

Benzodiazepines when introduced in 1961 were widely believed to be safe drugs but as the decades went by increased awareness of adverse effects connected to their long-term use became known. Recommendations for more restrictive medical guidelines followed. Concerns regarding the long-term effects of benzodiazepines have been raised since 1980. These concerns are still not fully answered. A review in 2006 of the literature on use of benzodiazepine and nonbenzodiazepine hypnotics concluded that more research is needed to evaluate the long-term effects of hypnotic drugs. The majority of the problems of benzodiazepines are related to their long-term use rather than their short-term use. There is growing evidence of the harm of long-term use of benzodiazepines, especially at higher doses. In 2007, the Department of Health recommended that individuals on long-term benzodiazepines be monitored at least every 3 months and also recommended against long-term substitution therapy in benzodiazepine drug misusers due to a lack of evidence base for effectiveness and due to the risks of long-term use. The long-term effects of benzodiazepines are very similar to the long-term effects of alcohol consumption (apart from organ toxicity) and other sedative-hypnotics. Withdrawal effects and dependence are not identical. Dependence can be managed, with a medical professional of course, but withdrawal can be fatal. Physical dependence and withdrawal are very much related but not the same thing. A report in 1987 by the Royal College of Psychiatrists in Great Britain reported that any benefits of long-term use of benzodiazepines are likely to be far outweighed by the risks of long-term use. Despite this benzodiazepines are still widely prescribed. The socioeconomic costs of the continued widespread prescribing of benzodiazepines is high.

Political Controversy

In 1980, the UK Medical Research Council (MRC) recommended that research be conducted into the effects of long-term use of benzodiazepines. A 2009 British Government parliamentary inquiry recommended that research into the long-term effects of benzodiazepines must be carried out. The view of the Department of Health is that they have made every effort to make doctors aware of the problems associated with the long-term use of benzodiazepines, as well as the dangers of benzodiazepine drug addiction.

In 1980, the Medicines and Healthcare Products Regulatory Agency’s Committee on the Safety of Medicines issued guidance restricting the use of benzodiazepines to short-term use and updated and strengthened these warnings in 1988. When asked by Phil Woolas in 1999 whether the Department of Health had any plans to conduct research into the long-term effects of benzodiazepines, the Department replied, saying they have no plans to do so, as benzodiazepines are already restricted to short-term use and monitored by regulatory bodies. In a House of Commons debate, Phil Woolas claimed that there had been a cover-up of problems associated with benzodiazepines because they are of too large of a scale for governments, regulatory bodies, and the pharmaceutical industry to deal with. John Hutton stated in response that the Department of Health took the problems of benzodiazepines extremely seriously and was not sweeping the issue under the carpet. In 2010, the All-Party Parliamentary Group on Involuntary Tranquilliser Addiction filed a complaint with the Equality and Human Rights Commission under the Disability Discrimination Act 1995 against the Department of Health and the Department for Work and Pensions alleging discrimination against people with a benzodiazepine prescription drug dependence as a result of denial of specialised treatment services, exclusion from medical treatment, non-recognition of the protracted benzodiazepine withdrawal syndrome, as well as denial of rehabilitation and back-to-work schemes. Additionally the APPGITA complaint alleged that there is a “virtual prohibition” on the collection of statistical information on benzodiazepines across government departments, whereas with other controlled drugs there are enormous volumes of statistical data. The complaint alleged that the discrimination is deliberate, large scale and that government departments are aware of what they are doing.

Declassified Medical Research Council Meeting

The UK Medical Research Council (MRC) held a closed meeting among top UK medical doctors and representatives from the pharmaceutical industry between the dates of 30 October 1980 and 3 April 1981. The meeting was classified under the Public Records Act 1958 until 2014 but became available in 2005 as a result of the Freedom of Information Act. The meeting was called due to concerns that 10-100,000 people could be dependent; meeting chairman Professor Malcolm Lader later revised this estimate to include approximately half a million members of the British public suspected of being dependent on therapeutic dose levels of benzodiazepines, with about half of those on long-term benzodiazepines. It was reported that benzodiazepines may be the third- or fourth-largest drug problem in the UK (the largest being alcohol and tobacco). The Chairman of the meeting followed up after the meeting with additional information, which was forwarded to the Medical Research Council neuroscience board, raising concerns regarding tests that showed definite cortical atrophy in 2 of 14 individuals tested and borderline abnormality in five others. He felt that, due to the methodology used in assessing the scans, the abnormalities were likely an underestimate, and more refined techniques would be more accurate. Also discussed were findings that tolerance to benzodiazepines can be demonstrated by injecting diazepam into long-term users; in normal subjects, increases in growth hormone occurs, whereas in benzodiazepine-tolerant individuals this effect is blunted. Also raised were findings in animal studies that showed the development of tolerance in the form of a 15% reduction in binding capacity of benzodiazepines after seven days administration of high doses of the partial agonist benzodiazepine drug flurazepam and a 50% reduction in binding capacity after 30 days of a low dose of diazepam. The Chairman was concerned that papers soon to be published would “stir the whole matter up” and wanted to be able to say that the Medical Research Council “had matters under consideration if questions were asked in parliament”. The Chairman felt that it “was very important, politically that the MRC should be ‘one step ahead'” and recommended epidemiological studies be funded and carried out by Roche Pharmaceuticals and MRC sponsored research conducted into the biochemical effects of long-term use of benzodiazepines. The meeting aimed to identify issues that were likely to arise, alert the Department of Health to the scale of the problem and identify the pharmacology and nature of benzodiazepine dependence and the volume of benzodiazepines being prescribed. The World Health Organisation (WHO) was also interested in the problem and it was felt the meeting would demonstrate to the WHO that the MRC was taking the issue seriously. Among the psychological effects of long-term use of benzodiazepines discussed was a reduced ability to cope with stress. The Chairman stated that the “withdrawal symptoms from valium were much worse than many other drugs including, e.g. heroin”. It was stated that the likelihood of withdrawing from benzodiazepines was “reduced enormously” if benzodiazepines were prescribed for longer than four months. It was concluded that benzodiazepines are often prescribed inappropriately, for a wide range of conditions and situations. Dr Mason (DHSS) and Dr Moir (SHHD) felt that, due to the large numbers of people using benzodiazepines for long periods of time, it was important to determine the effectiveness and toxicity of benzodiazepines before deciding what regulatory action to take.

Controversy resulted in 2010 when the previously secret files came to light over the fact that the Medical Research Council was warned that benzodiazepines prescribed to millions of patients appeared to cause cerebral atrophy similar to hazardous alcohol use in some patients and failed to carry out larger and more rigorous studies. The Independent on Sunday reported allegations that “scores” of the 1.5 million members of the UK public who use benzodiazepines long-term have symptoms that are consistent with brain damage. It has been described as a “huge scandal” by Jim Dobbin, and legal experts and MPs have predicted a class action lawsuit. A solicitor said she was aware of the past failed litigation against the drug companies and the relevance the documents had to that court case and said it was strange that the documents were kept ‘hidden’ by the MRC.

Professor Lader, who chaired the MRC meeting, declined to speculate as to why the MRC declined to support his request to set up a unit to further research benzodiazepines and why they did not set up a special safety committee to look into these concerns. Professor Lader stated that he regrets not being more proactive on pursuing the issue, stating that he did not want to be labelled as the guy who pushed only issues with benzos. Professor Ashton also submitted proposals for grant-funded research using MRI, EEG, and cognitive testing in a randomised controlled trial to assess whether benzodiazepines cause permanent damage to the brain, but similarly to Professor Lader was turned down by the MRC.

The MRC spokesperson said they accept the conclusions of Professor Lader’s research and said that they fund only research that meets required quality standards of scientific research, and stated that they were and continue to remain receptive to applications for research in this area. No explanation was reported for why the documents were sealed by the Public Records Act.

Jim Dobbin, who chaired the All-Party Parliamentary Group for Involuntary Tranquilliser Addiction, stated that:

Many victims have lasting physical, cognitive and psychological problems even after they have withdrawn. We are seeking legal advice because we believe these documents are the bombshell they have been waiting for. The MRC must justify why there was no proper follow-up to Professor Lader’s research, no safety committee, no study, nothing to further explore the results. We are talking about a huge scandal here.

The legal director of Action Against Medical Accidents said urgent research must be carried out and said that, if the results of larger studies confirm Professor Lader’s research, the government and MRC could be faced with one of the biggest group actions for damages the courts have ever seen, given the large number of people potentially affected. People who report enduring symptoms post-withdrawal such as neurological pain, headaches, cognitive impairment, and memory loss have been left in the dark as to whether these symptoms are drug-induced damage or not due to the MRC’s inaction, it was reported. Professor Lader reported that the results of his research did not surprise his research group given that it was already known that alcohol could cause permanent brain changes.

Class-Action Lawsuit

Benzodiazepines spurred the largest-ever class-action lawsuit against drug manufacturers in the UK, in the 1980s and early 1990s, involving 14,000 patients and 1,800 law firms that alleged the manufacturers knew of the potential for dependence but intentionally withheld this information from doctors. At the same time, 117 general practitioners and 50 health authorities were sued by patients to recover damages for the harmful effects of dependence and withdrawal. This led some doctors to require a signed consent form from their patients and to recommend that all patients be adequately warned of the risks of dependence and withdrawal before starting treatment with benzodiazepines. The court case against the drug manufacturers never reached a verdict; legal aid had been withdrawn, leading to the collapse of the trial, and there were allegations that the consultant psychiatrists, the expert witnesses, had a conflict of interest. This litigation led to changes in British law, making class-action lawsuits more difficult.

Symptoms

Effects of long-term benzodiazepine use may include disinhibition, impaired concentration and memory, depression, as well as sexual dysfunction. The long-term effects of benzodiazepines may differ from the adverse effects seen after acute administration of benzodiazepines. An analysis of cancer patients found that those who took tranquillisers or sleeping tablets had a substantially poorer quality of life on all measurements conducted, as well as a worse clinical picture of symptomatology. Worsening of symptoms such as fatigue, insomnia, pain, dyspnoea and constipation was found when compared against those who did not take tranquillisers or sleeping tablets. Most individuals who successfully discontinue hypnotic therapy after a gradual taper and do not take benzodiazepines for 6 months have less severe sleep and anxiety problems, are less distressed and have a general feeling of improved health at 6-month follow-up. The use of benzodiazepines for the treatment of anxiety has been found to lead to a significant increase in healthcare costs due to accidents and other adverse effects associated with the long-term use of benzodiazepines.

Cognitive Status

Long-term benzodiazepine use can lead to a generalised impairment of cognition, including sustained attention, verbal learning and memory and psychomotor, visuo-motor and visuo-conceptual abilities. Transient changes in the brain have been found using neuroimaging studies, but no brain abnormalities have been found in patients treated long term with benzodiazepines. When benzodiazepine users cease long-term benzodiazepine therapy, their cognitive function improves in the first six months, although deficits may be permanent or take longer than six months to return to baseline. In the elderly, long-term benzodiazepine therapy is a risk factor for amplifying cognitive decline, although gradual withdrawal is associated with improved cognitive status. A study of alprazolam found that 8 weeks administration of alprazolam resulted in deficits that were detectable after several weeks but not after 3.5 years.

Effect on Sleep

Sleep architecture can be adversely affected by benzodiazepine dependence. Possible adverse effects on sleep include induction or worsening of sleep disordered breathing. Like alcohol, benzodiazepines are commonly used to treat insomnia in the short term (both prescribed and self-medicated), but worsen sleep in the long term. Although benzodiazepines can put people to sleep, while asleep, the drugs disrupt sleep architecture, decreasing sleep time, delayed and decreased REM sleep, increased alpha and beta activity, decreased K complexes and delta activity, and decreased deep slow-wave sleep (i.e. NREM stages 3 and 4, the most restorative part of sleep for both energy and mood).

Mental and Physical Health

The long-term use of benzodiazepines may have a similar effect on the brain as alcohol, and is also implicated in depression, anxiety, post-traumatic stress disorder (PTSD), mania, psychosis, sleep disorders, sexual dysfunction, delirium, and neurocognitive disorders. However a 2016 study found no association between long-term usage and dementia. As with alcohol, the effects of benzodiazepine on neurochemistry, such as decreased levels of serotonin and norepinephrine, are believed to be responsible for their effects on mood and anxiety. Additionally, benzodiazepines can indirectly cause or worsen other psychiatric symptoms (e.g. mood, anxiety, psychosis, irritability) by worsening sleep (i.e. benzodiazepine-induced sleep disorder).

Long-term benzodiazepine use may lead to the creation or exacerbation of physical and mental health conditions, which improve after six or more months of abstinence. After a period of about 3 to 6 months of abstinence after completion of a gradual-reduction regimen, marked improvements in mental and physical wellbeing become apparent. For example, one study of hypnotic users gradually withdrawn from their hypnotic medication reported after six months of abstinence that they had less severe sleep and anxiety problems, were less distressed, and had a general feeling of improved health. Those who remained on hypnotic medication had no improvements in their insomnia, anxiety, or general health ratings. A study found that individuals having withdrawn from benzodiazepines showed a marked reduction in use of medical and mental health services.

Approximately half of patients attending mental health services for conditions including anxiety disorders such as panic disorder or social phobia may be the result of alcohol or benzodiazepine dependence. Sometimes anxiety disorders precede alcohol or benzodiazepine dependence but the alcohol or benzodiazepine dependence often acts to keep the anxiety disorders going and often progressively makes them worse. Many people who are addicted to alcohol or prescribed benzodiazepines decide to quit when it is explained to them they have a choice between ongoing ill mental health or quitting and recovering from their symptoms. It was noted that because every individual has an individual sensitivity level to alcohol or sedative hypnotic drugs, what one person can tolerate without ill health will cause another to suffer very ill health, and that even moderate drinking in sensitive individuals can cause rebound anxiety syndromes and sleep disorders. A person who is suffering the toxic effects of alcohol or benzodiazepines will not benefit from other therapies or medications as they do not address the root cause of the symptoms. Recovery from benzodiazepine dependence tends to take a lot longer than recovery from alcohol, but people can regain their previous good health. A review of the literature regarding benzodiazepine hypnotic drugs concluded that these drugs cause an unjustifiable risk to the individual and to public health. The risks include dependence, accidents and other adverse effects. Gradual discontinuation of hypnotics leads to improved health without worsening of sleep.

Daily users of benzodiazepines are also at a higher risk of experiencing psychotic symptomatology such as delusions and hallucinations. A study found that of 42 patients treated with alprazolam, up to a third of long-term users of the benzodiazepine drug alprazolam (Xanax) develop depression. Studies have shown that long-term use of benzodiazepines and the benzodiazepine receptor agonist nonbenzodiazepine Z drugs are associated with causing depression as well as a markedly raised suicide risk and an overall increased mortality risk.

A study of 50 patients who attended a benzodiazepine withdrawal clinic found that, after several years of chronic benzodiazepine use, a large portion of patients developed health problems including agoraphobia, irritable bowel syndrome, paraesthesia, increasing anxiety, and panic attacks, which were not pre-existing. The mental health and physical health symptoms induced by long-term benzodiazepine use gradually improved significantly over a period of a year following completion of a slow withdrawal. Three of the 50 patients had wrongly been given a preliminary diagnosis of multiple sclerosis when the symptoms were actually due to chronic benzodiazepine use. Ten of the patients had taken drug overdoses whilst on benzodiazepines, despite the fact that only two of the patients had any prior history of depressive symptomatology. After withdrawal, no patients took any further overdoses after one year post-withdrawal. The cause of the deteriorating mental and physical health in a significant proportion of patients was hypothesised to be caused by increasing tolerance where withdrawal-type symptoms emerged, despite the administration of stable prescribed doses. Another theory is that chronic benzodiazepine use causes subtle increasing toxicity, which in turn leads to increasing psychopathology in long-term users of benzodiazepines.

Long-term use of benzodiazepines can induce perceptual disturbances and depersonalisation in some people, even in those taking a stable daily dosage, and it can also become a protracted withdrawal feature of the benzodiazepine withdrawal syndrome.

In addition, chronic use of benzodiazepines is a risk factor for blepharospasm. Drug-induced symptoms that resemble withdrawal-like effects can occur on a set dosage as a result of prolonged use, also documented with barbiturate-like substances, as well as alcohol and benzodiazepines. This demonstrates that the effects from chronic use of benzodiazepine drugs are not unique but occur with other GABAergic sedative hypnotic drugs, i.e. alcohol and barbiturates.

Immune System

Chronic use of benzodiazepines seemed to cause significant immunological disorders in a study of selected outpatients attending a psychopharmacology department. Diazepam and clonazepam have been found to have long-lasting, but not permanent, immunotoxic effects in fetuses of rats. However, single very high doses of diazepam have been found to cause lifelong immunosuppression in neonatal rats. No studies have been done to assess the immunotoxic effects of diazepam in humans; however, high prescribed doses of diazepam, in humans, have been found to be a major risk of pneumonia, based on a study of people with tetanus. It have been proposed that diazepam may cause long-lasting changes to the GABAA receptors with resultant long-lasting disturbances to behaviour, endocrine function and immune function.

Suicide and Self-Harm

Use of prescribed benzodiazepines is associated with an increased rate of attempted and completed suicide. The prosuicidal effects of benzodiazepines are suspected to be due to a psychiatric disturbance caused by side effects or withdrawal symptoms. Because benzodiazepines in general may be associated with increased suicide risk, care should be taken when prescribing, especially to at-risk patients. Depressed adolescents who were taking benzodiazepines were found to have a greatly increased risk of self-harm or suicide, although the sample size was small. The effects of benzodiazepines in individuals under the age of 18 requires further research. Additional caution is required in using benzodiazepines in depressed adolescents. Benzodiazepine dependence often results in an increasingly deteriorating clinical picture, which includes social deterioration leading to comorbid alcohol use disorder and substance use disorder. Benzodiazepine misuse or misuse of other CNS depressants increases the risk of suicide in drug misusers. Benzodiazepine has several risks based on its biochemical function and symptoms associated with this medication like exacerbation of sleep apnoea, sedation, suppression of self-care functions, amnesia and disinhibition are suggested as a possible explanation to the increase in mortality. Studies also demonstrate that an increased mortality associated with benzodiazepine use has been clearly documented among ‘drug misusers’.

Carcinogenicity

There has been some controversy around the possible link between benzodiazepine use and development of cancer; early cohort studies in the 1980s suggested a possible link, but follow-up case-control studies have found no link between benzodiazepines and cancer. In the second US national cancer study in 1982, the American Cancer Society conducted a survey of over 1.1 million participants. A markedly increased risk of cancer was found in users of sleeping pills, mainly benzodiazepines. Fifteen epidemiologic studies have suggested that benzodiazepine or nonbenzodiazepine hypnotic drug use is associated with increased mortality, mainly due to increased cancer death. The cancers included cancer of the brain, lung, bowel, breast, and bladder, and other neoplasms. It has been hypothesised that benzodiazepines depress immune function and increase viral infections and could be the cause or trigger of the increased rate of cancer. While initially US Food and Drug Administration (FDA) reviewers expressed concerns about approving the nonbenzodiazepine Z drugs due to concerns of cancer, ultimately they changed their minds and approved the drugs. A 2017 meta-analysis of multiple observational studies found that benzodiazepine use is associated with increased cancer risk.

Brain Damage Evidence

In a study in 1980 in a group of 55 consecutively admitted patients having engaged in non-medical use of exclusively sedatives or hypnotics, neuropsychological performance was significantly lower and signs of intellectual impairment significantly more often diagnosed than in a matched control group taken from the general population. These results suggested a relationship between non-medical use of sedatives or hypnotics and cerebral disorder.

A publication asked in 1981 if lorazepam is more toxic than diazepam.

In a study in 1984, 20 patients having taken long-term benzodiazepines were submitted to brain CT scan examinations. Some scans appeared abnormal. The mean ventricular-brain ratio measured by planimetry was increased over mean values in an age- and sex-matched group of control subjects but was less than that in a group of alcoholics. There was no significant relationship between CT scan appearances and the duration of benzodiazepine therapy. The clinical significance of the findings was unclear.

In 1986, it was presumed that permanent brain damage may result from chronic use of benzodiazepines similar to alcohol-related brain damage.

In 1987, 17 inpatient people who used high doses of benzodiazepines non-medically have anecdotally shown enlarged cerebrospinal fluid spaces with associated cerebral atrophy. Cerebral atrophy reportedly appeared to be dose dependent with low-dose users having less atrophy than higher-dose users.

However, a CT study in 1987 found no evidence of cerebral atrophy in prescribed benzodiazepine users.

In 1989, in a 4- to 6-year follow-up study of 30 inpatient people who used benzodiazepines non-medically, Neuropsychological function was found to be permanently affected in some people long-term high dose non-medical use of benzodiazepines. Brain damage similar to alcoholic brain damage was observed. The CT scan abnormalities showed dilatation of the ventricular system. However, unlike people who consume excessive alcohol, people who use sedative hypnotic agents non-medically showed no evidence of widened cortical sulci. The study concluded that, when cerebral disorder is diagnosed in people who use high doses of sedative hypnotic benzodiazepines, it is often permanent.

A CT study in 1993 investigated brain damage in benzodiazepine users and found no overall differences to a healthy control group.

A study in 2000 found that long-term benzodiazepine therapy does not result in brain abnormalities.

Withdrawal from high-dose use of nitrazepam anecdotally was alleged in 2001 to have caused severe shock of the whole brain with diffuse slow activity on EEG in one patient after 25 years of use. After withdrawal, abnormalities in hypofrontal brain wave patterns persisted beyond the withdrawal syndrome, which suggested to the authors that organic brain damage occurred from chronic high-dose use of nitrazepam.

Professor Heather Ashton, a leading expert on benzodiazepines from Newcastle University Institute of Neuroscience, has stated that there is no structural damage from benzodiazepines, and advocates for further research into long-lasting or possibly permanent symptoms of long-term use of benzodiazepines as of 1996. She has stated that she believes that the most likely explanation for lasting symptoms is persisting but slowly resolving functional changes at the GABAA benzodiazepine receptor level. Newer and more detailed brain scanning technologies such as PET scans and MRI scans had as of 2002 to her knowledge never been used to investigate the question of whether benzodiazepines cause functional or structural brain damage.

A 2018 review of the research found a likely causative role between the use of benzodiazepines and an increased risk of dementia, but the exact nature of the relationship is still a matter of debate.

Special Populations

Neonatal Effects

Benzodiazepines have been found to cause teratogenic malformations. The literature concerning the safety of benzodiazepines in pregnancy is unclear and controversial. Initial concerns regarding benzodiazepines in pregnancy began with alarming findings in animals but these do not necessarily cross over to humans. Conflicting findings have been found in babies exposed to benzodiazepines. A recent analysis of the Swedish Medical Birth Register found an association with preterm births, low birth weight and a moderate increased risk for congenital malformations. An increase in pylorostenosis or alimentary tract atresia was seen. An increase in orofacial clefts was not demonstrated, however, and it was concluded that benzodiazepines are not major teratogens.

Neurodevelopmental disorders and clinical symptoms are commonly found in babies exposed to benzodiazepines in utero. Benzodiazepine-exposed babies have a low birth weight but catch up to normal babies at an early age, but smaller head circumferences found in benzo babies persists. Other adverse effects of benzodiazepines taken during pregnancy are deviating neurodevelopmental and clinical symptoms including craniofacial anomalies, delayed development of pincer grasp, deviations in muscle tone and pattern of movements. Motor impairments in the babies are impeded for up to 1 year after birth. Gross motor development impairments take 18 months to return to normal but fine motor function impairments persist. In addition to the smaller head circumference found in benzodiazepine-exposed babies mental retardation, functional deficits, long-lasting behavioural anomalies, and lower intelligence occurs.

Benzodiazepines, like many other sedative hypnotic drugs, cause apoptotic neuronal cell death. However, benzodiazepines do not cause as severe apoptosis to the developing brain as alcohol does. The prenatal toxicity of benzodiazepines is most likely due to their effects on neurotransmitter systems, cell membranes and protein synthesis. This, however, is complicated in that neuropsychological or neuropsychiatric effects of benzodiazepines, if they occur, may not become apparent until later childhood or even adolescence. A review of the literature found data on long-term follow-up regarding neurobehavioural outcomes is very limited. However, a study was conducted that followed up 550 benzodiazepine-exposed children, which found that, overall, most children developed normally. There was a smaller subset of benzodiazepine-exposed children who were slower to develop, but by four years of age most of this subgroup of children had normalised. There was a small number of benzodiazepine-exposed children who had continuing developmental abnormalities at 4-year follow-up, but it was not possible to conclude whether these deficits were the result of benzodiazepines or whether social and environmental factors explained the continuing deficits.

Concerns regarding whether benzodiazepines during pregnancy cause major malformations, in particular cleft palate, have been hotly debated in the literature. A meta analysis of the data from cohort studies found no link but meta analysis of case–control studies did find a significant increase in major malformations. (However, the cohort studies were homogenous and the case-control studies were heterogeneous, thus reducing the strength of the case-control results). There have also been several reports that suggest that benzodiazepines have the potential to cause a syndrome similar to foetal alcohol syndrome, but this has been disputed by a number of studies. As a result of conflicting findings, use of benzodiazepines during pregnancy is controversial. The best available evidence suggests that benzodiazepines are not a major cause of birth defects, i.e. major malformations or cleft lip or cleft palate.

Elderly

Significant toxicity from benzodiazepines can occur in the elderly as a result of long-term use. Benzodiazepines, along with antihypertensives and drugs affecting the cholinergic system, are the most common cause of drug-induced dementia affecting over 10 percent of patients attending memory clinics. Long-term use of benzodiazepines in the elderly can lead to a pharmacological syndrome with symptoms including drowsiness, ataxia, fatigue, confusion, weakness, dizziness, vertigo, syncope, reversible dementia, depression, impairment of intellect, psychomotor and sexual dysfunction, agitation, auditory and visual hallucinations, paranoid ideation, panic, delirium, depersonalisation, sleepwalking, aggressiveness, orthostatic hypotension and insomnia. Depletion of certain neurotransmitters and cortisol levels and alterations in immune function and biological markers can also occur. Elderly individuals who have been long-term users of benzodiazepines have been found to have a higher incidence of post-operative confusion. Benzodiazepines have been associated with increased body sway in the elderly, which can potentially lead to fatal accidents including falls. Discontinuation of benzodiazepines leads to improvement in the balance of the body and also leads to improvements in cognitive functions in the elderly benzodiazepine hypnotic users without worsening of insomnia.

A review of the evidence has found that whilst long-term use of benzodiazepines impairs memory, its association with causing dementia is not clear and requires further research. A more recent study found that benzodiazepines are associated with an increased risk of dementia and it is recommended that benzodiazepines be avoided in the elderly. A later study, however, found no increase in dementia associated with long-term usage of benzodiazepine.

What is the Beers Criteria?

Introduction

The Beers Criteria for Potentially Inappropriate Medication Use in Older Adults, commonly called the Beers List, are guidelines for healthcare professionals to help improve the safety of prescribing medications for older adults 65 years and older in all except palliative setting.

They emphasize deprescribing medications that are unnecessary, which helps to reduce the problems of polypharmacy, drug interactions, and adverse drug reactions, thereby improving the risk–benefit ratio of medication regimens in at-risk people.

The criteria are used in geriatrics clinical care to monitor and improve the quality of care. They are also used in training, research, and healthcare policy to assist in developing performance measures and document outcomes. These criteria include lists of medications in which the potential risks may be greater than the potential benefits for people 65 and older. By considering this information, practitioners may be able to reduce harmful side effects caused by such medications. The Beers Criteria are intended to serve as a guide for clinicians and not as a substitute for professional judgement in prescribing decisions. The criteria may be used in conjunction with other information to guide clinicians about safe prescribing in older adults.

Brief History

Geriatrician Mark H. Beers formulated the Beers Criteria through a consensus panel of experts using the Delphi method. The criteria were originally published in the Archives of Internal Medicine in 1991 and updated in 1997, 2003, 2012, 2015, and most recently in January 2019.

In 2018, the American Geriatrics Society (AGS) partnered with CSIS Health Corp to provide the first and only licensed software application of the Beers Criteria for use in Electronic Health Records, Population Health Management, and Care Management platforms.

Management of Criteria

In 2011, the AGS convened an eleven-member multidisciplinary panel of experts in geriatric medicine, nursing, and pharmacotherapy to develop the 2012 edition of the AGS Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults.

The 2012 AGS Beers Criteria differ from previous editions in several ways. In addition to using a modified Delphi process for building consensus, the expert panel followed the evidence-based approach that AGS has used since it developed its first practice guideline on persistent pain in 1998. The Institute of Medicine (IOM) in its 2011 report, Clinical Practice Guidelines We Can Trust, recommended that all guideline developers complete a systematic review of the evidence. Following the recommendation of the IOM, AGS added a public comment period that occurred in parallel to its standard invited external peer review process. In a significant departure from previous versions of the criteria, each recommendation is rated for quality of both the evidence supporting the panel’s recommendations and the strength of their recommendations.

In another departure from the 2003 criteria, the 2012 AGS Beers Criteria identify and group medications that may be inappropriate for older adults into three different categories instead of the previous two. The first category includes medications that are potentially inappropriate for older people because they either pose high risks of adverse effects or appear to have limited effectiveness in older patients, and because there are alternatives to these medications. The second category includes medications that are potentially inappropriate for older people who have certain diseases or disorders because these drugs may exacerbate the specified health problems. The third category includes medications that, although they may be associated with more risks than benefits in general, may be the best choice for a particular individual if administered with caution.

The 2012 AGS Beers Criteria was released in February 2012 via publication in the early online edition of the Journal of the American Geriatrics Society.

The most recent update to the Beers criteria was completed in 2019.

Style of the Publication

Drugs listed on the Beers List are categorised according to risks for negative outcomes. The tables include medications that have cautions, should be avoided, should be avoided with concomitant medical conditions, and are contraindicated and relatively contraindicated in the elderly population. An example of an included drug is diphenhydramine (Benadryl), a first-generation H1 antagonist with anticholinergic properties, which may increase sedation and lead to confusion or falls.

What are the Adverse Effects of Venlafaxine?

Introduction

The following list shows the rates of adverse symptoms seen in people taking venlafaxine.

Very Common (>>10% Incidence)

  • Headache:
    • An often transient side effect that is common to most serotonin reuptake inhibitors and that most often occurs at the beginning of therapy or after a dose escalation.
  • Nausea:
    • An adverse effect that is more common with venlafaxine than with the SSRIs.
    • Usually transient and less severe in those receiving the extended release formulations.
  • Insomnia.
  • Asthenia (weakness).
  • Dizziness.
  • Ejaculation disorder:
    • Sexual side effects can be seen with virtually any antidepressant, especially those that inhibit the reuptake of serotonin (including venlafaxine).
  • Somnolence.
  • Dry mouth.
  • Sweating.
  • Withdrawal.

Common (1-10% incidence)

  • Constipation.
  • Nervousness.
  • Abnormal vision.
  • Anorgasmia.
  • Hypertension.
  • Impotence.
  • Paraesthesia.
  • Tremor.
  • Vasodilation.
  • Vomiting.
  • Weight loss.
  • Chills.
  • Palpitations.
  • Confusion.
  • Depersonalisation.
  • Night sweats.
  • Menstrual disorders associated with increased bleeding or increased irregular bleeding (e.g. menorrhagia, metrorrhagia).
  • Urinary frequency increased.
  • Abnormal dreams.
  • Decreased libido.
  • Increased muscle tonus.
  • Yawning.
  • Sweating.
  • Abnormality of accommodation.
  • Abnormal ejaculation/orgasm (males).
  • Urinary hesitancy.
  • Serum cholesterol increased (especially when treatment is prolonged and it may be dose-dependent).

Uncommon (0.1-1% incidence)

  • Face oedema.
  • Intentional injury (self-injury).
  • Malaise.
  • Moniliasis.
  • Neck rigidity.
  • Pelvic pain.
  • Photosensitivity reaction.
  • Suicide attempt.
  • Withdrawal syndrome (Antidepressant Discontinuation Syndrome).
  • Hypotension.
  • Postural hypotension.
  • Syncope.
  • Tachycardia.
  • Bruxism.
  • Ecchymosis.
  • Mucous membrane bleeding.
  • Gastrointestinal bleeding.
  • Abnormal liver function tests.
  • Hyponatraemia.
  • Weight gain.
  • Apathy.
  • Hallucinations.
  • Myoclonus.
  • Rash.
  • Abnormal orgasm (females).
  • Urinary retention (the inability to pass urine).
  • Angioedema.
  • Agitation.
  • Impaired coordination & balance.
  • Alopecia (hair loss).
  • Tinnitus (hearing bells).
  • Proteinuria (protein in urine).

Rare (0.01-0.1% incidence)

  • Syndrome of inappropriate antidiuretic hormone secretion (SIADH).
  • Thrombocytopenia.
  • Prolonged bleeding time.
  • Seizures.
  • Mania.
  • Neuroleptic malignant syndrome (NMS).
  • Serotonin syndrome.
  • Akathisia/psychomotor restlessness.
  • Urinary incontinence.

Very Rare (<0.01% incidence)

  • Anaphylaxis.
  • QT prolongation.
  • Ventricular fibrillation.
  • Ventricular tachycardia (including torsades de pointes).
  • Pancreatitis.
  • Blood dyscrasias (including agranulocytosis, aplastic anaemia, neutropenia and pancytopenia).
  • Elevated serum prolactin.
  • Delirium.
  • Extrapyramidal reactions (including dystonia and dyskinesia).
  • Tardive dyskinesia.
  • Pulmonary eosinophilia.
  • Erythema multiforme.
  • Stevens-Johnson syndrome.
  • Pruritus.
  • Urticaria.
  • Toxic epidermal necrolysis.
  • Angle closure glaucoma.

What are the Long-Term Effects of Benzodiazepine Use?

Introduction

The effects of long-term benzodiazepine use include drug dependence and neurotoxicity as well as the possibility of adverse effects on cognitive function, physical health, and mental health.

Refer to Benzodiazepine Use Disorder, Benzodiazepine Dependence, Benzodiazepine Overdose, and Benzodiazepine Withdrawal Syndrome.

Long term use is sometimes described as use not shorter than three months. Benzodiazepines are generally effective when used therapeutically in the short term, but even then the risk of dependency can be significantly high. There are significant physical, mental and social risks associated with the long-term use of benzodiazepines. Although anxiety can temporarily increase as a withdrawal symptom, there is evidence that a reduction or withdrawal from benzodiazepines can lead in the long run to a reduction of anxiety symptoms. Due to these increasing physical and mental symptoms from long-term use of benzodiazepines, slow withdrawal is recommended for long-term users. Not everyone, however, experiences problems with long-term use.

Some of the symptoms that could possibly occur as a result of a withdrawal from benzodiazepines after long-term use include emotional clouding, flu-like symptoms, suicide, nausea, headaches, dizziness, irritability, lethargy, sleep problems, memory impairment, personality changes, aggression, depression, social deterioration as well as employment difficulties, while others never have any side effects from long-term benzodiazepine use. Abruptly or rapidly stopping benzodiazepines can be dangerous; when withdrawing a gradual reduction in dosage is recommended, under professional supervision.

While benzodiazepines are highly effective in the short term, adverse effects associated with long-term use, including impaired cognitive abilities, memory problems, mood swings, and overdoses when combined with other drugs, may make the risk-benefit ratio unfavourable. In addition, benzodiazepines have reinforcing properties in some individuals and thus are considered to be addictive drugs, especially in individuals that have a “drug-seeking” behaviour; further, a physical dependence can develop after a few weeks or months of use. Many of these adverse effects associated with long-term use of benzodiazepines begin to show improvements three to six months after withdrawal.

Other concerns about the effects associated with long-term benzodiazepine use, in some, include dose escalation, benzodiazepine use disorder, tolerance and benzodiazepine dependence and benzodiazepine withdrawal problems. Both physiological tolerance and dependence can be associated with worsening the adverse effects associated with benzodiazepines. Increased risk of death has been associated with long-term use of benzodiazepines in several studies; however, other studies have not found increased mortality. Due to conflicting findings in studies regarding benzodiazepines and increased risks of death including from cancer, further research in long-term use of benzodiazepines and mortality risk has been recommended; most of the available research has been conducted in prescribed users, even less is known about illicit misusers. The long-term use of benzodiazepines is controversial and has generated significant debate within the medical profession. Views on the nature and severity of problems with long-term use of benzodiazepines differ from expert to expert and even from country to country; some experts even question whether there is any problem with the long-term use of benzodiazepines.

Brief History

Benzodiazepines when introduced in 1961 were widely believed to be safe drugs but as the decades went by increased awareness of adverse effects connected to their long-term use became known. Recommendations for more restrictive medical guidelines followed. Concerns regarding the long-term effects of benzodiazepines have been raised since 1980. These concerns are still not fully answered. A review in 2006 of the literature on use of benzodiazepine and nonbenzodiazepine hypnotics concluded that more research is needed to evaluate the long-term effects of hypnotic drugs. The majority of the problems of benzodiazepines are related to their long-term use rather than their short-term use. There is growing evidence of the harm of long-term use of benzodiazepines, especially at higher doses. In 2007, the Department of Health recommended that individuals on long-term benzodiazepines be monitored at least every 3 months and also recommended against long-term substitution therapy in benzodiazepine drug misusers due to a lack of evidence base for effectiveness and due to the risks of long-term use. The long-term effects of benzodiazepines are very similar to the long-term effects of alcohol consumption (apart from organ toxicity) and other sedative-hypnotics. Withdrawal effects and dependence are almost identical. A report in 1987 by the Royal College of Psychiatrists in Great Britain reported that any benefits of long-term use of benzodiazepines are likely to be far outweighed by the risks of long-term use. Despite this benzodiazepines are still widely prescribed. The socioeconomic costs of the continued widespread prescribing of benzodiazepines is high.

Political Controversy

In 1980, the Medical Research Council (United Kingdom) recommended that research be conducted into the effects of long-term use of benzodiazepines A 2009 British Government parliamentary inquiry recommended that research into the long-term effects of benzodiazepines must be carried out. The view of the Department of Health is that they have made every effort to make doctors aware of the problems associated with the long-term use of benzodiazepines, as well as the dangers of benzodiazepine drug addiction.

In 1980, the Medicines and Healthcare products Regulatory Agency’s Committee on the Safety of Medicines issued guidance restricting the use of benzodiazepines to short-term use and updated and strengthened these warnings in 1988. When asked by Phil Woolas in 1999 whether the Department of Health had any plans to conduct research into the long-term effects of benzodiazepines, the Department replied, saying they have no plans to do so, as benzodiazepines are already restricted to short-term use and monitored by regulatory bodies. In a House of Commons debate, Phil Woolas claimed that there had been a cover-up of problems associated with benzodiazepines because they are of too large of a scale for governments, regulatory bodies, and the pharmaceutical industry to deal with. John Hutton stated in response that the Department of Health took the problems of benzodiazepines extremely seriously and was not sweeping the issue under the carpet. In 2010, the All-Party Parliamentary Group on Involuntary Tranquilliser Addiction filed a complaint with the Equality and Human Rights Commission under the Disability Discrimination Act 1995 against the Department of Health and the Department for Work and Pensions alleging discrimination against people with a benzodiazepine prescription drug dependence as a result of denial of specialised treatment services, exclusion from medical treatment, non-recognition of the protracted benzodiazepine withdrawal syndrome, as well as denial of rehabilitation and back-to-work schemes. Additionally the APPGITA complaint alleged that there is a “virtual prohibition” on the collection of statistical information on benzodiazepines across government departments, whereas with other controlled drugs there are enormous volumes of statistical data. The complaint alleged that the discrimination is deliberate, large scale and that government departments are aware of what they are doing.

Declassified Medical Research Council Meeting

The Medical Research Council (UK) held a closed meeting among top UK medical doctors and representatives from the pharmaceutical industry between the dates of 30 October 1980 and 03 April 1981. The meeting was classified under the Public Records Act 1958 until 2014 but became available in 2005 as a result of the Freedom of Information Act. The meeting was called due to concerns that 10-100,000 people could be dependent; meeting chairman Professor Malcolm Lader later revised this estimate to include approximately half a million members of the British public suspected of being dependent on therapeutic dose levels of benzodiazepines, with about half of those on long-term benzodiazepines. It was reported that benzodiazepines may be the third- or fourth-largest drug problem in the UK (the largest being alcohol and tobacco). The Chairman of the meeting followed up after the meeting with additional information, which was forwarded to the Medical Research Council neuroscience board, raising concerns regarding tests that showed definite cortical atrophy in 2 of 14 individuals tested and borderline abnormality in five others. He felt that, due to the methodology used in assessing the scans, the abnormalities were likely an underestimate, and more refined techniques would be more accurate. Also discussed were findings that tolerance to benzodiazepines can be demonstrated by injecting diazepam into long-term users; in normal subjects, increases in growth hormone occurs, whereas in benzodiazepine-tolerant individuals this effect is blunted. Also raised were findings in animal studies that showed the development of tolerance in the form of a 15 percent reduction in binding capacity of benzodiazepines after seven days administration of high doses of the partial agonist benzodiazepine drug flurazepam and a 50% reduction in binding capacity after 30 days of a low dose of diazepam. The Chairman was concerned that papers soon to be published would “stir the whole matter up” and wanted to be able to say that the Medical Research Council “had matters under consideration if questions were asked in parliament”. The Chairman felt that it “was very important, politically that the MRC should be ‘one step ahead'” and recommended epidemiological studies be funded and carried out by Roche Pharmaceuticals and MRC sponsored research conducted into the biochemical effects of long-term use of benzodiazepines. The meeting aimed to identify issues that were likely to arise, alert the Department of Health to the scale of the problem and identify the pharmacology and nature of benzodiazepine dependence and the volume of benzodiazepines being prescribed. The World Health Organisation (WHO) was also interested in the problem and it was felt the meeting would demonstrate to the WHO that the MRC was taking the issue seriously. Among the psychological effects of long-term use of benzodiazepines discussed was a reduced ability to cope with stress. The Chairman stated that the “withdrawal symptoms from valium were much worse than many other drugs including, e.g., heroin”. It was stated that the likelihood of withdrawing from benzodiazepines was “reduced enormously” if benzodiazepines were prescribed for longer than four months. It was concluded that benzodiazepines are often prescribed inappropriately, for a wide range of conditions and situations. Dr Mason (DHSS) and Dr Moir (SHHD) felt that, due to the large numbers of people using benzodiazepines for long periods of time, it was important to determine the effectiveness and toxicity of benzodiazepines before deciding what regulatory action to take.

Controversy resulted in 2010 when the previously secret files came to light over the fact that the Medical Research Council was warned that benzodiazepines prescribed to millions of patients appeared to cause cerebral atrophy similar to hazardous alcohol use in some patients and failed to carry out larger and more rigorous studies. The Independent on Sunday reported allegations that “scores” of the 1.5 million members of the UK public who use benzodiazepines long-term have symptoms that are consistent with brain damage. It has been described as a “huge scandal” by Jim Dobbin, and legal experts and MPs have predicted a class action lawsuit. A solicitor said she was aware of the past failed litigation against the drug companies and the relevance the documents had to that court case and said it was strange that the documents were kept ‘hidden’ by the MRC.

Professor Lader, who chaired the MRC meeting, declined to speculate as to why the MRC declined to support his request to set up a unit to further research benzodiazepines and why they did not set up a special safety committee to look into these concerns. Professor Lader stated that he regrets not being more proactive on pursuing the issue, stating that he did not want to be labelled as the guy who pushed only issues with benzos. Professor Ashton also submitted proposals for grant-funded research using MRI, EEG, and cognitive testing in a randomized controlled trial to assess whether benzodiazepines cause permanent damage to the brain, but similarly to Professor Lader was turned down by the MRC.

The MRC spokesperson said they accept the conclusions of Professor Lader’s research and said that they fund only research that meets required quality standards of scientific research, and stated that they were and continue to remain receptive to applications for research in this area. No explanation was reported for why the documents were sealed by the Public Records Act.

Jim Dobbin, who chaired the All-Party Parliamentary Group for Involuntary Tranquilliser Addiction, stated that:

Many victims have lasting physical, cognitive and psychological problems even after they have withdrawn. We are seeking legal advice because we believe these documents are the bombshell they have been waiting for. The MRC must justify why there was no proper follow-up to Professor Lader’s research, no safety committee, no study, nothing to further explore the results. We are talking about a huge scandal here.

The legal director of Action Against Medical Accidents said urgent research must be carried out and said that, if the results of larger studies confirm Professor Lader’s research, the government and MRC could be faced with one of the biggest group actions for damages the courts have ever seen, given the large number of people potentially affected. People who report enduring symptoms post-withdrawal such as neurological pain, headaches, cognitive impairment, and memory loss have been left in the dark as to whether these symptoms are drug-induced damage or not due to the MRC’s inaction, it was reported. Professor Lader reported that the results of his research did not surprise his research group given that it was already known that alcohol could cause permanent brain changes.

Class-Action Lawsuit

Benzodiazepines spurred the largest-ever class-action lawsuit against drug manufacturers in the United Kingdom, in the 1980s and early 1990s, involving 14,000 patients and 1,800 law firms that alleged the manufacturers knew of the potential for dependence but intentionally withheld this information from doctors. At the same time, 117 general practitioners and 50 health authorities were sued by patients to recover damages for the harmful effects of dependence and withdrawal. This led some doctors to require a signed consent form from their patients and to recommend that all patients be adequately warned of the risks of dependence and withdrawal before starting treatment with benzodiazepines. The court case against the drug manufacturers never reached a verdict; legal aid had been withdrawn, leading to the collapse of the trial, and there were allegations that the consultant psychiatrists, the expert witnesses, had a conflict of interest. This litigation led to changes in British law, making class-action lawsuits more difficult.

Symptoms

Effects of long-term benzodiazepine use may include disinhibition, impaired concentration and memory, depression, as well as sexual dysfunction. The long-term effects of benzodiazepines may differ from the adverse effects seen after acute administration of benzodiazepines. An analysis of cancer patients found that those who took tranquillisers or sleeping tablets had a substantially poorer quality of life on all measurements conducted, as well as a worse clinical picture of symptomatology. Worsening of symptoms such as fatigue, insomnia, pain, dyspnoea and constipation was found when compared against those who did not take tranquillisers or sleeping tablets. Most individuals who successfully discontinue hypnotic therapy after a gradual taper and do not take benzodiazepines for 6 months have less severe sleep and anxiety problems, are less distressed and have a general feeling of improved health at 6-month follow-up. The use of benzodiazepines for the treatment of anxiety has been found to lead to a significant increase in healthcare costs due to accidents and other adverse effects associated with the long-term use of benzodiazepines.

Cognitive Status

Long-term benzodiazepine use can lead to a generalised impairment of cognition, including sustained attention, verbal learning and memory and psychomotor, visuo-motor and visuo-conceptual abilities. Transient changes in the brain have been found using neuroimaging studies, but no brain abnormalities have been found in patients treated long term with benzodiazepines. When benzodiazepine users cease long-term benzodiazepine therapy, their cognitive function improves in the first six months, although deficits may be permanent or take longer than six months to return to baseline. In the elderly, long-term benzodiazepine therapy is a risk factor for amplifying cognitive decline, although gradual withdrawal is associated with improved cognitive status. A study of alprazolam found that 8 weeks administration of alprazolam resulted in deficits that were detectable after several weeks but not after 3.5 years.

Effect on Sleep

Sleep architecture can be adversely affected by benzodiazepine dependence. Possible adverse effects on sleep include induction or worsening of sleep disordered breathing. Like alcohol, benzodiazepines are commonly used to treat insomnia in the short term (both prescribed and self-medicated), but worsen sleep in the long term. Although benzodiazepines can put people to sleep, while asleep, the drugs disrupt sleep architecture, decreasing sleep time, delayed and decreased REM sleep, increased alpha and beta activity, decreased K complexes and delta activity, and decreased deep slow-wave sleep (i.e. NREM stages 3 and 4, the most restorative part of sleep for both energy and mood).

Mental and Physical Health

The long-term use of benzodiazepines may have a similar effect on the brain as alcohol, and is also implicated in depression, anxiety, post-traumatic stress disorder (PTSD), mania, psychosis, sleep disorders, sexual dysfunction, delirium, and neurocognitive disorders. However a 2016 study found no association between long-term usage and dementia. As with alcohol, the effects of benzodiazepine on neurochemistry, such as decreased levels of serotonin and norepinephrine, are believed to be responsible for their effects on mood and anxiety.[39] Additionally, benzodiazepines can indirectly cause or worsen other psychiatric symptoms (e.g. mood, anxiety, psychosis, irritability) by worsening sleep (i.e. benzodiazepine-induced sleep disorder).

Long-term benzodiazepine use may lead to the creation or exacerbation of physical and mental health conditions, which improve after six or more months of abstinence. After a period of about 3 to 6 months of abstinence after completion of a gradual-reduction regimen, marked improvements in mental and physical wellbeing become apparent. For example, one study of hypnotic users gradually withdrawn from their hypnotic medication reported after six months of abstinence that they had less severe sleep and anxiety problems, were less distressed, and had a general feeling of improved health. Those who remained on hypnotic medication had no improvements in their insomnia, anxiety, or general health ratings. A study found that individuals having withdrawn from benzodiazepines showed a marked reduction in use of medical and mental health services.

Approximately half of patients attending mental health services for conditions including anxiety disorders such as panic disorder or social phobia may be the result of alcohol or benzodiazepine dependence. Sometimes anxiety disorders precede alcohol or benzodiazepine dependence but the alcohol or benzodiazepine dependence often acts to keep the anxiety disorders going and often progressively makes them worse. Many people who are addicted to alcohol or prescribed benzodiazepines decide to quit when it is explained to them they have a choice between ongoing ill mental health or quitting and recovering from their symptoms. It was noted that because every individual has an individual sensitivity level to alcohol or sedative hypnotic drugs, what one person can tolerate without ill health will cause another to suffer very ill health, and that even moderate drinking in sensitive individuals can cause rebound anxiety syndromes and sleep disorders. A person who is suffering the toxic effects of alcohol or benzodiazepines will not benefit from other therapies or medications as they do not address the root cause of the symptoms. Recovery from benzodiazepine dependence tends to take a lot longer than recovery from alcohol, but people can regain their previous good health. A review of the literature regarding benzodiazepine hypnotic drugs concluded that these drugs cause an unjustifiable risk to the individual and to public health. The risks include dependence, accidents and other adverse effects. Gradual discontinuation of hypnotics leads to improved health without worsening of sleep.

Daily users of benzodiazepines are also at a higher risk of experiencing psychotic symptomatology such as delusions and hallucinations. A study found that of 42 patients treated with alprazolam, up to a third of long-term users of the benzodiazepine drug alprazolam (Xanax) develop depression. Studies have shown that long-term use of benzodiazepines and the benzodiazepine receptor agonist nonbenzodiazepine Z drugs are associated with causing depression as well as a markedly raised suicide risk and an overall increased mortality risk.

A study of 50 patients who attended a benzodiazepine withdrawal clinic found that, after several years of chronic benzodiazepine use, a large portion of patients developed health problems including agoraphobia, irritable bowel syndrome, paraesthesia, increasing anxiety, and panic attacks, which were not pre-existing. The mental health and physical health symptoms induced by long-term benzodiazepine use gradually improved significantly over a period of a year following completion of a slow withdrawal. Three of the 50 patients had wrongly been given a preliminary diagnosis of multiple sclerosis when the symptoms were actually due to chronic benzodiazepine use. Ten of the patients had taken drug overdoses whilst on benzodiazepines, despite the fact that only two of the patients had any prior history of depressive symptomatology. After withdrawal, no patients took any further overdoses after one year post-withdrawal. The cause of the deteriorating mental and physical health in a significant proportion of patients was hypothesised to be caused by increasing tolerance where withdrawal-type symptoms emerged, despite the administration of stable prescribed doses. Another theory is that chronic benzodiazepine use causes subtle increasing toxicity, which in turn leads to increasing psychopathology in long-term users of benzodiazepines.

Long-term use of benzodiazepines can induce perceptual disturbances and depersonalisation in some people, even in those taking a stable daily dosage, and it can also become a protracted withdrawal feature of the benzodiazepine withdrawal syndrome.

In addition, chronic use of benzodiazepines is a risk factor for blepharospasm. Drug-induced symptoms that resemble withdrawal-like effects can occur on a set dosage as a result of prolonged use, also documented with barbiturate-like substances, as well as alcohol and benzodiazepines. This demonstrates that the effects from chronic use of benzodiazepine drugs are not unique but occur with other GABAergic sedative hypnotic drugs, i.e. alcohol and barbiturates.

Immune System

Chronic use of benzodiazepines seemed to cause significant immunological disorders in a study of selected outpatients attending a psychopharmacology department. Diazepam and clonazepam have been found to have long-lasting, but not permanent, immunotoxic effects in foetuses of rats. However, single very high doses of diazepam have been found to cause lifelong immunosuppression in neonatal rats. No studies have been done to assess the immunotoxic effects of diazepam in humans; however, high prescribed doses of diazepam, in humans, have been found to be a major risk of pneumonia, based on a study of people with tetanus. It have been proposed that diazepam may cause long-lasting changes to the GABAA receptors with resultant long-lasting disturbances to behaviour, endocrine function and immune function.

Suicide and Self-Harm

Use of prescribed benzodiazepines is associated with an increased rate of attempted and completed suicide. The prosuicidal effects of benzodiazepines are suspected to be due to a psychiatric disturbance caused by side effects or withdrawal symptoms. Because benzodiazepines in general may be associated with increased suicide risk, care should be taken when prescribing, especially to at-risk patients. Depressed adolescents who were taking benzodiazepines were found to have a greatly increased risk of self-harm or suicide, although the sample size was small. The effects of benzodiazepines in individuals under the age of 18 requires further research. Additional caution is required in using benzodiazepines in depressed adolescents. Benzodiazepine dependence often results in an increasingly deteriorating clinical picture, which includes social deterioration leading to comorbid alcohol use disorder and substance use disorder. Benzodiazepine misuse or misuse of other CNS depressants increases the risk of suicide in drug misusers. Benzodiazepine has several risks based on its biochemical function and symptoms associated with this medication like exacerbation of sleep apnoea, sedation, suppression of self-care functions, amnesia and disinhibition are suggested as a possible explanation to the increase in mortality. Studies also demonstrate that an increased mortality associated with benzodiazepine use has been clearly documented among ‘drug misusers’.

Carcinogenicity

There has been some controversy around the possible link between benzodiazepine use and development of cancer; early cohort studies in the 1980s suggested a possible link, but follow-up case-control studies have found no link between benzodiazepines and cancer. In the second U.S. national cancer study in 1982, the American Cancer Society conducted a survey of over 1.1 million participants. A markedly increased risk of cancer was found in users of sleeping pills, mainly benzodiazepines. Fifteen epidemiologic studies have suggested that benzodiazepine or nonbenzodiazepine hypnotic drug use is associated with increased mortality, mainly due to increased cancer death. The cancers included cancer of the brain, lung, bowel, breast, and bladder, and other neoplasms. It has been hypothesised that benzodiazepines depress immune function and increase viral infections and could be the cause or trigger of the increased rate of cancer. While initially US Food and Drug Administration (FDA) reviewers expressed concerns about approving the nonbenzodiazepine Z drugs due to concerns of cancer, ultimately they changed their minds and approved the drugs. A 2017 meta-analysis of multiple observational studies found that benzodiazepine use is associated with increased cancer risk.

Brain Damage

In a study in 1980 in a group of 55 consecutively admitted patients having engaged in non-medical use of exclusively sedatives or hypnotics, neuropsychological performance was significantly lower and signs of intellectual impairment significantly more often diagnosed than in a matched control group taken from the general population. These results suggested a relationship between non-medical use of sedatives or hypnotics and cerebral disorder.

A publication asked in 1981 if lorazepam is more toxic than diazepam.

In a study in 1984, 20 patients having taken long-term benzodiazepines were submitted to brain CT scan examinations. Some scans appeared abnormal. The mean ventricular-brain ratio measured by planimetry was increased over mean values in an age- and sex-matched group of control subjects but was less than that in a group of alcoholics. There was no significant relationship between CT scan appearances and the duration of benzodiazepine therapy. The clinical significance of the findings was unclear.

In 1986, it was presumed that permanent brain damage may result from chronic use of benzodiazepines similar to alcohol-related brain damage.

In 1987, 17 inpatient people who used high doses of benzodiazepines non-medically have anecdotally shown enlarged cerebrospinal fluid spaces with associated cerebral atrophy. Cerebral atrophy reportedly appeared to be dose dependent with low-dose users having less atrophy than higher-dose users.

However, a CT study in 1987 found no evidence of cerebral atrophy in prescribed benzodiazepine users.

In 1989, in a 4- to 6-year follow-up study of 30 inpatient people who used benzodiazepines non-medically, Neuropsychological function was found to be permanently affected in some people long-term high dose non-medical use of benzodiazepines. Brain damage similar to alcoholic brain damage was observed. The CT scan abnormalities showed dilatation of the ventricular system. However, unlike people who consume excessive alcohol, people who use sedative hypnotic agents non-medically showed no evidence of widened cortical sulci. The study concluded that, when cerebral disorder is diagnosed in people who use high doses of sedative hypnotic benzodiazepines, it is often permanent.

A CT study in 1993 investigated brain damage in benzodiazepine users and found no overall differences to a healthy control group.

A study in 2000 found that long-term benzodiazepine therapy does not result in brain abnormalities.

Withdrawal from high-dose use of nitrazepam anecdotally was alleged in 2001 to have caused severe shock of the whole brain with diffuse slow activity on EEG in one patient after 25 years of use. After withdrawal, abnormalities in hypofrontal brain wave patterns persisted beyond the withdrawal syndrome, which suggested to the authors that organic brain damage occurred from chronic high-dose use of nitrazepam.

Professor Heather Ashton, a leading expert on benzodiazepines from Newcastle University Institute of Neuroscience, has stated that there is no structural damage from benzodiazepines, and advocates for further research into long-lasting or possibly permanent symptoms of long-term use of benzodiazepines as of 1996. She has stated that she believes that the most likely explanation for lasting symptoms is persisting but slowly resolving functional changes at the GABAA benzodiazepine receptor level. Newer and more detailed brain scanning technologies such as PET scans and MRI scans had as of 2002 to her knowledge never been used to investigate the question of whether benzodiazepines cause functional or structural brain damage.

A 2018 review of the research found a likely causative role between the use of benzodiazepines and an increased risk of dementia, but the exact nature of the relationship is still a matter of debate.

Special Populations

Neonatal Effects

Benzodiazepines have been found to cause teratogenic malformations. The literature concerning the safety of benzodiazepines in pregnancy is unclear and controversial. Initial concerns regarding benzodiazepines in pregnancy began with alarming findings in animals but these do not necessarily cross over to humans. Conflicting findings have been found in babies exposed to benzodiazepines. A recent analysis of the Swedish Medical Birth Register found an association with preterm births, low birth weight and a moderate increased risk for congenital malformations. An increase in pylorostenosis or alimentary tract atresia was seen. An increase in orofacial clefts was not demonstrated, however, and it was concluded that benzodiazepines are not major teratogens.

Neurodevelopmental disorders and clinical symptoms are commonly found in babies exposed to benzodiazepines in utero. Benzodiazepine-exposed babies have a low birth weight but catch up to normal babies at an early age, but smaller head circumferences found in benzo babies persists. Other adverse effects of benzodiazepines taken during pregnancy are deviating neurodevelopmental and clinical symptoms including craniofacial anomalies, delayed development of pincer grasp, deviations in muscle tone and pattern of movements. Motor impairments in the babies are impeded for up to 1 year after birth. Gross motor development impairments take 18 months to return to normal but fine motor function impairments persist. In addition to the smaller head circumference found in benzodiazepine-exposed babies mental retardation, functional deficits, long-lasting behavioural anomalies, and lower intelligence occurs.

Benzodiazepines, like many other sedative hypnotic drugs, cause apoptotic neuronal cell death. However, benzodiazepines do not cause as severe apoptosis to the developing brain as alcohol does. The prenatal toxicity of benzodiazepines is most likely due to their effects on neurotransmitter systems, cell membranes and protein synthesis. This, however, is complicated in that neuropsychological or neuropsychiatric effects of benzodiazepines, if they occur, may not become apparent until later childhood or even adolescence. A review of the literature found data on long-term follow-up regarding neurobehavioural outcomes is very limited. However, a study was conducted that followed up 550 benzodiazepine-exposed children, which found that, overall, most children developed normally. There was a smaller subset of benzodiazepine-exposed children who were slower to develop, but by four years of age most of this subgroup of children had normalised. There was a small number of benzodiazepine-exposed children who had continuing developmental abnormalities at 4-year follow-up, but it was not possible to conclude whether these deficits were the result of benzodiazepines or whether social and environmental factors explained the continuing deficits.

Concerns regarding whether benzodiazepines during pregnancy cause major malformations, in particular cleft palate, have been hotly debated in the literature. A meta analysis of the data from cohort studies found no link but meta analysis of case-control studies did find a significant increase in major malformations. (However, the cohort studies were homogenous and the case-control studies were heterogeneous, thus reducing the strength of the case-control results). There have also been several reports that suggest that benzodiazepines have the potential to cause a syndrome similar to foetal alcohol syndrome, but this has been disputed by a number of studies. As a result of conflicting findings, use of benzodiazepines during pregnancy is controversial. The best available evidence suggests that benzodiazepines are not a major cause of birth defects, i.e. major malformations or cleft lip or cleft palate.

Elderly

Significant toxicity from benzodiazepines can occur in the elderly as a result of long-term use. Benzodiazepines, along with antihypertensives and drugs affecting the cholinergic system, are the most common cause of drug-induced dementia affecting over 10 percent of patients attending memory clinics. Long-term use of benzodiazepines in the elderly can lead to a pharmacological syndrome with symptoms including drowsiness, ataxia, fatigue, confusion, weakness, dizziness, vertigo, syncope, reversible dementia, depression, impairment of intellect, psychomotor and sexual dysfunction, agitation, auditory and visual hallucinations, paranoid ideation, panic, delirium, depersonalisation, sleepwalking, aggressiveness, orthostatic hypotension and insomnia. Depletion of certain neurotransmitters and cortisol levels and alterations in immune function and biological markers can also occur. Elderly individuals who have been long-term users of benzodiazepines have been found to have a higher incidence of post-operative confusion. Benzodiazepines have been associated with increased body sway in the elderly, which can potentially lead to fatal accidents including falls. Discontinuation of benzodiazepines leads to improvement in the balance of the body and also leads to improvements in cognitive functions in the elderly benzodiazepine hypnotic users without worsening of insomnia.

A review of the evidence has found that whilst long-term use of benzodiazepines impairs memory, its association with causing dementia is not clear and requires further research. A more recent study found that benzodiazepines are associated with an increased risk of dementia and it is recommended that benzodiazepines be avoided in the elderly. A later study, however, found no increase in dementia associated with long-term usage of benzodiazepine.

What is the Role of the Microbiota-Gut-Brain Axis in Mental Health & Medication Response?

Research Paper Title

The Microbiota-Gut-Brain Axis in Mental Health and Medication Response: Parsing Directionality and Causality.

Abstract

There is increasing evidence for the role of the microbiome in various mental health disorders. Moreover, there has been a growing understanding of the importance of the microbiome in mediating both the efficacy and side effects of various medications, including psychotropics.

In this issue, Tomizawa and colleagues report on the effect of psychotropic drugs on the gut microbiome of 40 patients with depression and/or anxiety disorders.

In their longitudinal cohort, the authors find that antipsychotics, but not anxiolytics, decrease microbiome alpha diversity. They further find that antipsychotics dosage was negatively correlated with alpha diversity in these patients.

The health consequences of these microbiome alterations remain to be fully understood. In this commentary, the authors will discuss such findings through the lens of several recent studies on the microbiota-gut-brain axis. They also use the paper as a backdrop to discuss directionality and, by extension, causality in relation to microbiota-gut-brain-brain signalling.

Reference

Bastiaanssen, T.F.S. & Cryan, J.F. (2021) The Microbiota-Gut-Brain Axis in Mental Health and Medication Response: Parsing Directionality and Causality. The International Journal of Neuropsychopharmacology. 24(3), pp.216-220. doi: 10.1093/ijnp/pyaa088.

The Substance: Albert Hoffman’s LSD (2011)

Introduction

The Substance: Albert Hofmann’s LSD is a 2011 documentary film directed by Martin Witz.

The film documents the coincidental discovery of the drug LSD by the Swiss chemist Albert Hofmann in 1943.

Outline

In 1943, the year in which the first A-bomb was built, Albert Hofmann discovered LSD, a substance that was to become an A-bomb of the mind. Fractions of a milligram are enough to turn our framework of time and space upside down. The story of a drug – its discovery in the Basel chemistry lab, the first experiments by Albert Hofmann on himself, the 1950s experiments of the psychiatrists, the consciousness researchers, the artists. Could it actually be possible to find a path to the core of our human existence by means of a chemical? Spirituality at the flick of a switch? Do the enigmatic effects of this drug really help us to better understand the human soul? Could LSD be an instrument of contemporary psychiatry? Of modern brain research?

Production & Filming Details

  • Narrator(s): Trevor J. Roling (English), Hanspeter Muller (German), and Mario Scarabelli (Italian).
  • Director(s): Martin Witz.
  • Producer(s):
    • Elda Guidinetti … producer.
    • Peter Luisi … co-producer.
    • Andres Pfäffli … producer.
    • Carl-Ludwig Rettinger … co-producer.
  • Writer(s): Martin Witz.
  • Music: Marcel Vaid.
  • Cinematography: Pio Corradi and Patrick Lindenmaier.
  • Editor(s): Stefan Kalin.
  • Production:
    • Ventura Film (presents).
    • RSI-Radiotelevisione Svizzera (in co-production with).
    • Teleclub AG (in co-production with) (as Teleclub).
    • Lichtblick Film- und Fernsehproduktion (I) (in co-production with) (as Lichtblick Filmproduktion).
    • Spotlight Media Production AG (in co-production with) (as Spotlight Media Productions).
  • Distributor(s):
    • Officine UBU (2012) (Italy) (all media).
    • Cinema Delicatessen (2012) (Netherlands) (theatrical).
    • I Wonder Pictures (2013) (Italy) (theatrical).
    • Mindjazz Pictures (2012) (Germany) (theatrical).
    • Film1 Sundance Channel (2015) (Netherlands) (TV) (limited).
    • Frenetic Films (2011) (Switzerland) (all media).
    • Icarus Films (2012) (USA) (all media).
    • Soda Pictures (2011) (UK) (DVD).
    • Yleisradio (YLE) (2012) (Finland) (TV).
  • Release Date: 07 August 2011 (Locarno Film Festival, Switzerland).
  • Running Time: 90 minutes.
  • Rating: 15.
  • Country: US.
  • Language: English.

Video Link