What is Psychoneuroimmunology?

Introduction

Psychoneuroimmunology (PNI), also referred to as psychoendoneuroimmunology (PENI) or psychoneuroendocrinoimmunology (PNEI), is the study of the interaction between psychological processes and the nervous and immune systems of the human body. It is a subfield of psychosomatic medicine. PNI takes an interdisciplinary approach, incorporating psychology, neuroscience, immunology, physiology, genetics, pharmacology, molecular biology, psychiatry, behavioural medicine, infectious diseases, endocrinology, and rheumatology.

The main interests of PNI are the interactions between the nervous and immune systems and the relationships between mental processes and health. PNI studies, among other things, the physiological functioning of the neuroimmune system in health and disease; disorders of the neuroimmune system (autoimmune diseases; hypersensitivities; immune deficiency); and the physical, chemical and physiological characteristics of the components of the neuroimmune system in vitro, in situ, and in vivo.

Brief History

Interest in the relationship between psychiatric syndromes or symptoms and immune function has been a consistent theme since the beginning of modern medicine.

Claude Bernard, a French physiologist of the Muséum national d’Histoire naturelle (National Museum of Natural History in English), formulated the concept of the milieu interieur in the mid-1800s. In 1865, Bernard described the perturbation of this internal state: “… there are protective functions of organic elements holding living materials in reserve and maintaining without interruption humidity, heat and other conditions indispensable to vital activity. Sickness and death are only a dislocation or perturbation of that mechanism” (Bernard, 1865). Walter Cannon, a professor of physiology at Harvard University coined the commonly used term, homeostasis, in his book The Wisdom of the Body, 1932, from the Greek word homoios, meaning similar, and stasis, meaning position. In his work with animals, Cannon observed that any change of emotional state in the beast, such as anxiety, distress, or rage, was accompanied by total cessation of movements of the stomach (Bodily Changes in Pain, Hunger, Fear and Rage, 1915). These studies looked into the relationship between the effects of emotions and perceptions on the autonomic nervous system, namely the sympathetic and parasympathetic responses that initiated the recognition of the freeze, fight or flight response. His findings were published from time to time in professional journals, then summed up in book form in The Mechanical Factors of Digestion, published in 1911.

Hans Selye, a student of Johns Hopkins University and McGill University, and a researcher at Université de Montréal, experimented with animals by putting them under different physical and mental adverse conditions and noted that under these difficult conditions the body consistently adapted to heal and recover. Several years of experimentation that formed the empiric foundation of Selye’s concept of the General Adaptation Syndrome. This syndrome consists of an enlargement of the adrenal gland, atrophy of the thymus, spleen, and other lymphoid tissue, and gastric ulcerations.

Selye describes three stages of adaptation, including an initial brief alarm reaction, followed by a prolonged period of resistance, and a terminal stage of exhaustion and death. This foundational work led to a rich line of research on the biological functioning of glucocorticoids.

Mid-20th century studies of psychiatric patients reported immune alterations in psychotic individuals, including lower numbers of lymphocytes and poorer antibody response to pertussis vaccination, compared with nonpsychiatric control subjects. In 1964, George F. Solomon, from the University of California in Los Angeles, and his research team coined the term “psychoimmunology” and published a landmark paper: “Emotions, immunity, and disease: a speculative theoretical integration.”

Origins

In 1975, Robert Ader and Nicholas Cohen, at the University of Rochester, advanced PNI with their demonstration of classic conditioning of immune function, and they subsequently coined the term “psychoneuroimmunology”. Ader was investigating how long conditioned responses (in the sense of Pavlov’s conditioning of dogs to drool when they heard a bell ring) might last in laboratory rats. To condition the rats, he used a combination of saccharin-laced water (the conditioned stimulus) and the drug Cytoxan, which unconditionally induces nausea and taste aversion and suppression of immune function. Ader was surprised to discover that after conditioning, just feeding the rats saccharin-laced water was associated with the death of some animals and he proposed that they had been immunosuppressed after receiving the conditioned stimulus. Ader (a psychologist) and Cohen (an immunologist) directly tested this hypothesis by deliberately immunizing conditioned and unconditioned animals, exposing these and other control groups to the conditioned taste stimulus, and then measuring the amount of antibody produced. The highly reproducible results revealed that conditioned rats exposed to the conditioned stimulus were indeed immunosuppressed. In other words, a signal via the nervous system (taste) was affecting immune function. This was one of the first scientific experiments that demonstrated that the nervous system can affect the immune system.

In the 1970s, Hugo Besedovsky, Adriana del Rey and Ernst Sorkin, working in Switzerland, reported multi-directional immune-neuro-endocrine interactions, since they show that not only the brain can influence immune processes but also the immune response itself can affect the brain and neuroendocrine mechanisms. They found that the immune responses to innocuous antigens triggers an increase in the activity of hypothalamic neurons and hormonal and autonomic nerve responses that are relevant for immunoregulation and are integrated at brain levels. On these bases, they proposed that the immune system acts as a sensorial receptor organ that, besides its peripheral effects, can communicate to the brain and associated neuro-endocrine structures its state of activity. These investigators also identified products from immune cells, later characterized as cytokines, that mediate this immune-brain communication.

In 1981, David L. Felten, then working at the Indiana University School of Medicine, and his colleague JM Williams, discovered a network of nerves leading to blood vessels as well as cells of the immune system. The researchers also found nerves in the thymus and spleen terminating near clusters of lymphocytes, macrophages, and mast cells, all of which help control immune function. This discovery provided one of the first indications of how neuro-immune interaction occurs.

Ader, Cohen, and Felten went on to edit the groundbreaking book Psychoneuroimmunology in 1981, which laid out the underlying premise that the brain and immune system represent a single, integrated system of defence.

In 1985, research by neuropharmacologist Candace Pert, of the National Institutes of Health at Georgetown University, revealed that neuropeptide-specific receptors are present on the cell walls of both the brain and the immune system. The discovery that neuropeptides and neurotransmitters act directly upon the immune system shows their close association with emotions and suggests mechanisms through which emotions, from the limbic system, and immunology are deeply interdependent. Showing that the immune and endocrine systems are modulated not only by the brain but also by the central nervous system itself affected the understanding of emotions, as well as disease.

Contemporary advances in psychiatry, immunology, neurology, and other integrated disciplines of medicine has fostered enormous growth for PNI. The mechanisms underlying behaviourally induced alterations of immune function, and immune alterations inducing behavioural changes, are likely to have clinical and therapeutic implications that will not be fully appreciated until more is known about the extent of these interrelationships in normal and pathophysiological states.

The Immune-Brain Loop

PNI research looks for the exact mechanisms by which specific neuroimmune effects are achieved. Evidence for nervous-immunological interactions exist at multiple biological levels.

The immune system and the brain communicate through signalling pathways. The brain and the immune system are the two major adaptive systems of the body. Two major pathways are involved in this cross-talk: the Hypothalamic-pituitary-adrenal axis (HPA axis), and the sympathetic nervous system (SNS), via the sympathetic-adrenal-medullary axis (SAM axis). The activation of SNS during an immune response might be aimed to localise the inflammatory response.

The body’s primary stress management system is the HPA axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body’s cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases, with evidence from meta-analyses indicating that different types/duration of stressors and unique personal variables can shape the HPA response. HPA axis activity and cytokines are intrinsically intertwined: inflammatory cytokines stimulate adrenocorticotropic hormone (ACTH) and cortisol secretion, while, in turn, glucocorticoids suppress the synthesis of proinflammatory cytokines.

Molecules called pro-inflammatory cytokines, which include interleukin-1 (IL-1), Interleukin-2 (IL-2), interleukin-6 (IL-6), Interleukin-12 (IL-12), Interferon-gamma (IFN-Gamma) and tumour necrosis factor alpha (TNF-alpha) can affect brain growth as well as neuronal function. Circulating immune cells such as macrophages, as well as glial cells (microglia and astrocytes) secrete these molecules. Cytokine regulation of hypothalamic function is an active area of research for the treatment of anxiety-related disorders.

Cytokines mediate and control immune and inflammatory responses. Complex interactions exist between cytokines, inflammation and the adaptive responses in maintaining homeostasis. Like the stress response, the inflammatory reaction is crucial for survival. Systemic inflammatory reaction results in stimulation of four major programs:

  • The acute-phase reaction.
  • Sickness behaviour.
  • The pain programme.
  • The stress response.

These are mediated by the HPA axis and the SNS. Common human diseases such as allergy, autoimmunity, chronic infections and sepsis are characterised by a dysregulation of the pro-inflammatory versus anti-inflammatory and T helper (Th1) versus (Th2) cytokine balance. Recent studies show pro-inflammatory cytokine processes take place during depression, mania and bipolar disease, in addition to autoimmune hypersensitivity and chronic infections.

Chronic secretion of stress hormones, glucocorticoids (GCs) and catecholamines (CAs), as a result of disease, may reduce the effect of neurotransmitters, including serotonin, norepinephrine and dopamine, or other receptors in the brain, thereby leading to the dysregulation of neurohormones. Under stimulation, norepinephrine is released from the sympathetic nerve terminals in organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released norepinephrine, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells.

Glucocorticoids also inhibit the further secretion of corticotropin-releasing hormone from the hypothalamus and ACTH from the pituitary (negative feedback). Under certain conditions stress hormones may facilitate inflammation through induction of signalling pathways and through activation of the Corticotropin-releasing hormone.

These abnormalities and the failure of the adaptive systems to resolve inflammation affect the well-being of the individual, including behavioural parameters, quality of life and sleep, as well as indices of metabolic and cardiovascular health, developing into a “systemic anti-inflammatory feedback” and/or “hyperactivity” of the local pro-inflammatory factors which may contribute to the pathogenesis of disease.

This systemic or neuro-inflammation and neuroimmune activation have been shown to play a role in the aetiology of a variety of neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease, multiple sclerosis, pain, and AIDS-associated dementia. However, cytokines and chemokines also modulate central nervous system (CNS) function in the absence of overt immunological, physiological, or psychological challenges.

Psychoneuroimmunological Effects

There are now sufficient data to conclude that immune modulation by psychosocial stressors and/or interventions can lead to actual health changes. Although changes related to infectious disease and wound healing have provided the strongest evidence to date, the clinical importance of immunological dysregulation is highlighted by increased risks across diverse conditions and diseases. For example, stressors can produce profound health consequences. In one epidemiological study, all-cause mortality increased in the month following a severe stressor – the death of a spouse. Theorists propose that stressful events trigger cognitive and affective responses which, in turn, induce sympathetic nervous system and endocrine changes, and these ultimately impair immune function. Potential health consequences are broad, but include rates of infection HIV progression cancer incidence and progression, and high rates of infant mortality.

Understanding Stress and Immune Function

Stress is thought to affect immune function through emotional and/or behavioural manifestations such as anxiety, fear, tension, anger and sadness and physiological changes such as heart rate, blood pressure, and sweating. Researchers have suggested that these changes are beneficial if they are of limited duration, but when stress is chronic, the system is unable to maintain equilibrium or homeostasis; the body remains in a state of arousal, where digestion is slower to reactivate or does not reactivate properly, often resulting in indigestion. Furthermore, blood pressure stays at higher levels.

In one of the earlier PNI studies, which was published in 1960, subjects were led to believe that they had accidentally caused serious injury to a companion through misuse of explosives. Since then decades of research resulted in two large meta-analyses, which showed consistent immune dysregulation in healthy people who are experiencing stress.

In the first meta-analysis by Herbert and Cohen in 1993, they examined 38 studies of stressful events and immune function in healthy adults. They included studies of acute laboratory stressors (e.g. a speech task), short-term naturalistic stressors (e.g. medical examinations), and long-term naturalistic stressors (e.g. divorce, bereavement, caregiving, unemployment). They found consistent stress-related increases in numbers of total white blood cells, as well as decreases in the numbers of helper T cells, suppressor T cells, and cytotoxic T cells, B cells, and natural killer cells (NK). They also reported stress-related decreases in NK and T cell function, and T cell proliferative responses to phytohaemagglutinin [PHA] and concanavalin A [Con A]. These effects were consistent for short-term and long-term naturalistic stressors, but not laboratory stressors.

In the second meta-analysis by Zorrilla et al. in 2001, they replicated Herbert and Cohen’s meta-analysis. Using the same study selection procedures, they analysed 75 studies of stressors and human immunity. Naturalistic stressors were associated with increases in number of circulating neutrophils, decreases in number and percentages of total T cells and helper T cells, and decreases in percentages of natural killer cell (NK) cells and cytotoxic T cell lymphocytes. They also replicated Herbert and Cohen’s finding of stress-related decreases in NKCC and T cell mitogen proliferation to phytohaemagglutinin (PHA) and concanavalin A (Con A).

A study done by the American Psychological Association did an experiment on rats, where they applied electrical shocks to a rat, and saw how interleukin-1 was released directly into the brain. Interleukin-1 is the same cytokine released when a macrophage chews on a bacterium, which then travels up the vagus nerve, creating a state of heightened immune activity, and behavioural changes.

More recently, there has been increasing interest in the links between interpersonal stressors and immune function. For example, marital conflict, loneliness, caring for a person with a chronic medical condition, and other forms on interpersonal stress dysregulate immune function.

Communication Between the Brain and Immune System

  • Stimulation of brain sites alters immunity (stressed animals have altered immune systems).
  • Damage to brain hemispheres alters immunity (hemispheric lateralisation effects).
  • Immune cells produce cytokines that act on the CNS.
  • Immune cells respond to signals from the CNS.

Communication Between Neuroendocrine and Immune System

  • Glucocorticoids and catecholamines influence immune cells.
  • Hypothalamic Pituitary Adrenal axis releases the needed hormones to support the immune system.
  • Activity of the immune system is correlated with neurochemical/neuroendocrine activity of brain cells.

Connections Between Glucocorticoids and Immune System

  • Anti-inflammatory hormones that enhance the organism’s response to a stressor.
  • Prevent the overreaction of the body’s own defence system.
  • Overactivation of glucocorticoid receptors can lead to health risks.
  • Regulators of the immune system.
  • Affect cell growth, proliferation and differentiation.
  • Cause immunosuppression which can lead to an extended amount of time fighting off infections.
  • High basal levels of cortisol are associated with a higher risk of infection.
  • Suppress cell adhesion, antigen presentation, chemotaxis and cytotoxicity.
  • Increase apoptosis.

Corticotropin-Releasing Hormone (CRH)

Release of corticotropin-releasing hormone (CRH) from the hypothalamus is influenced by stress.

  • CRH is a major regulator of the HPA axis/stress axis.
  • CRH Regulates secretion of Adrenocorticotropic hormone (ACTH).
  • CRH is widely distributed in the brain and periphery.
  • CRH also regulates the actions of the Autonomic nervous system ANS and immune system.

Furthermore, stressors that enhance the release of CRH suppress the function of the immune system; conversely, stressors that depress CRH release potentiate immunity.

  • Central mediated since peripheral administration of CRH antagonist does not affect immunosuppression.
  • HPA axis/stress axis responds consistently to stressors that are new, unpredictable and that have low-perceived control.
  • As cortisol reaches an appropriate level in response to the stressor, it deregulates the activity of the hippocampus, hypothalamus, and pituitary gland which results in less production of cortisol.

Relationships Between Prefrontal Cortex Activation and Cellular Senescence

  • Psychological stress is regulated by the prefrontal cortex (PFC).
  • The PFC modulates vagal activity.
  • Prefrontally modulated and vagally mediated cholinergic input to the spleen reduces inflammatory responses.

Pharmaceutical Advances

Glutamate agonists, cytokine inhibitors, vanilloid-receptor agonists, catecholamine modulators, ion-channel blockers, anticonvulsants, GABA agonists (including opioids and cannabinoids), COX inhibitors, acetylcholine modulators, melatonin analogues (such as Ramelton), adenosine receptor antagonists and several miscellaneous drugs (including biologics like Passiflora edulis) are being studied for their psychoneuroimmunological effects.

For example, SSRIs, SNRIs and tricyclic antidepressants acting on serotonin, norepinephrine, dopamine and cannabinoid receptors have been shown to be immunomodulatory and anti-inflammatory against pro-inflammatory cytokine processes, specifically on the regulation of IFN-gamma and IL-10, as well as TNF-alpha and IL-6 through a psychoneuroimmunological process. Antidepressants have also been shown to suppress TH1 upregulation.

Tricyclic and dual serotonergic-noradrenergic reuptake inhibition by SNRIs (or SSRI-NRI combinations), have also shown analgesic properties additionally. According to recent evidences antidepressants also seem to exert beneficial effects in experimental autoimmune neuritis in rats by decreasing Interferon-beta (IFN-beta) release or augmenting NK activity in depressed patients.

These studies warrant investigation of antidepressants for use in both psychiatric and non-psychiatric illness and that a psychoneuroimmunological approach may be required for optimal pharmacotherapy in many diseases. Future antidepressants may be made to specifically target the immune system by either blocking the actions of pro-inflammatory cytokines or increasing the production of anti-inflammatory cytokines.

The endocannabinoid system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery. The endocannabinoid-induced modulation of stress-related behaviours appears to be mediated, at least in part, through the regulation of the serotoninergic system, by which cannabinoid CB1 receptors modulate the excitability of dorsal raphe serotonin neurons. Data suggest that the endocannabinoid system in cortical and subcortical structures is differentially altered in an animal model of depression and that the effects of chronic, unpredictable stress (CUS) on CB1 receptor binding site density are attenuated by antidepressant treatment while those on endocannabinoid content are not.

The increase in amygdalar CB1 receptor binding following imipramine treatment is consistent with prior studies which collectively demonstrate that several treatments which are beneficial to depression, such as electroconvulsive shock and tricyclic antidepressant treatment, increase CB1 receptor activity in subcortical limbic structures, such as the hippocampus, amygdala and hypothalamus. And preclinical studies have demonstrated the CB1 receptor is required for the behavioural effects of noradrenergic based antidepressants but is dispensable for the behavioural effect of serotonergic based antidepressants.

Extrapolating from the observations that positive emotional experiences boost the immune system, Roberts speculates that intensely positive emotional experiences – sometimes brought about during mystical experiences occasioned by psychedelic medicines – may boost the immune system powerfully. Research on salivary IgA supports this hypothesis, but experimental testing has not been done.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Psychoneuroimmunology >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Route of Administration?

Introduction

A route of administration in pharmacology and toxicology is the way by which a drug, fluid, poison, or other substance is taken into the body.

Routes of administration are generally classified by the location at which the substance is applied. Common examples include oral and intravenous administration. Routes can also be classified based on where the target of action is. Action may be topical (local), enteral (system-wide effect, but delivered through the gastrointestinal tract), or parenteral (systemic action, but delivered by routes other than the GI tract).

Route of administration and dosage form are aspects of drug delivery.

Classification

Routes of administration are usually classified by application location (or exposition).

The route or course the active substance takes from application location to the location where it has its target effect is usually rather a matter of pharmacokinetics (concerning the processes of uptake, distribution, and elimination of drugs). Exceptions include the transdermal or transmucosal routes, which are still commonly referred to as routes of administration.

The location of the target effect of active substances are usually rather a matter of pharmacodynamics (concerning e.g. the physiological effects of drugs). An exception is topical administration, which generally means that both the application location and the effect thereof is local.

Topical administration is sometimes defined as both a local application location and local pharmacodynamic effect, and sometimes merely as a local application location regardless of location of the effects.

By Application Location

Enteral/Gastrointestinal

through the gastrointestinal tract is sometimes termed enteral or enteric administration (literally meaning ‘through the intestines’). Enteral/enteric administration usually includes oral (through the mouth) and rectal (into the rectum) administration, in the sense that these are taken up by the intestines. However, uptake of drugs administered orally may also occur already in the stomach, and as such gastrointestinal (along the gastrointestinal tract) may be a more fitting term for this route of administration. Furthermore, some application locations often classified as enteral, such as sublingual (under the tongue) and sublabial or buccal (between the cheek and gums/gingiva), are taken up in the proximal part of the gastrointestinal tract without reaching the intestines. Strictly enteral administration (directly into the intestines) can be used for systemic administration, as well as local (sometimes termed topical), such as in a contrast enema, whereby contrast media are infused into the intestines for imaging. However, for the purposes of classification based on location of effects, the term enteral is reserved for substances with systemic effects.

Many drugs as tablets, capsules, or drops are taken orally. Administration methods directly into the stomach include those by gastric feeding tube or gastrostomy. Substances may also be placed into the small intestines, as with a duodenal feeding tube and enteral nutrition. Enteric coated tablets are designed to dissolve in the intestine, not the stomach, because the drug present in the tablet causes irritation in the stomach.

The rectal route is an effective route of administration for many medications, especially those used at the end of life. The walls of the rectum absorb many medications quickly and effectively. Medications delivered to the distal one-third of the rectum at least partially avoid the “first pass effect” through the liver, which allows for greater bio-availability of many medications than that of the oral route. Rectal mucosa is highly vascularised tissue that allows for rapid and effective absorption of medications. A suppository is a solid dosage form that fits for rectal administration. In hospice care, a specialised rectal catheter, designed to provide comfortable and discreet administration of ongoing medications provides a practical way to deliver and retain liquid formulations in the distal rectum, giving health practitioners a way to leverage the established benefits of rectal administration. The Murphy drip is an example of rectal infusion.

Parenteral

The parenteral route is any route that is not enteral (par- + enteral).

Parenteral administration can be performed by injection, that is, using a needle (usually a hypodermic needle) and a syringe, or by the insertion of an indwelling catheter.

Locations of application of parenteral administration include:

  • Central nervous system:
    • Epidural (synonym: peridural) (injection or infusion into the epidural space), e.g. epidural anesthesia.
    • Intracerebral (into the cerebrum) administration by direct injection into the brain. Used in experimental research of chemicals and as a treatment for malignancies of the brain. The intracerebral route can also interrupt the blood brain barrier from holding up against subsequent routes.
    • Intracerebroventricular (into the cerebral ventricles) administration into the ventricular system of the brain. One use is as a last line of opioid treatment for terminal cancer patients with intractable cancer pain.
  • Epicutaneous (application onto the skin). It can be used both for local effect as in allergy testing and typical local anaesthesia, as well as systemic effects when the active substance diffuses through skin in a transdermal route.
  • Sublingual and buccal medication administration is a way of giving someone medicine orally (by mouth). Sublingual administration is when medication is placed under the tongue to be absorbed by the body. The word “sublingual” means “under the tongue.” Buccal administration involves placement of the drug between the gums and the cheek. These medications can come in the form of tablets, films, or sprays. Many drugs are designed for sublingual administration, including cardiovascular drugs, steroids, barbiturates, opioid analgesics with poor gastrointestinal bioavailability, enzymes and, increasingly, vitamins and minerals.
  • Extra-amniotic administration, between the endometrium and foetal membranes.
  • Nasal administration (through the nose) can be used for topically acting substances, as well as for insufflation of e.g. decongestant nasal sprays to be taken up along the respiratory tract. Such substances are also called inhalational, e.g. inhalational anaesthetics.
  • Intra-arterial (into an artery), e.g. vasodilator drugs in the treatment of vasospasm and thrombolytic drugs for treatment of embolism.
  • Intra-articular, into a joint space. It is generally performed by joint injection. It is mainly used for symptomatic relief in osteoarthritis.
  • Intracardiac (into the heart), e.g. adrenaline during cardiopulmonary resuscitation (no longer commonly performed).
  • Intracavernous injection, an injection into the base of the penis.
  • Intradermal, (into the skin itself) is used for skin testing some allergens, and also for mantoux test for tuberculosis.
  • Intralesional (into a skin lesion), is used for local skin lesions, e.g. acne medication.
  • Intramuscular (into a muscle), e.g. many vaccines, antibiotics, and long-term psychoactive agents. Recreationally the colloquial term ‘muscling’ is used.
  • Intraocular, into the eye, e.g., some medications for glaucoma or eye neoplasms.
  • Intraosseous infusion (into the bone marrow) is, in effect, an indirect intravenous access because the bone marrow drains directly into the venous system. This route is occasionally used for drugs and fluids in emergency medicine and paediatrics when intravenous access is difficult.
  • Intraperitoneal, (infusion or injection into the peritoneum) e.g. peritoneal dialysis.
  • Intrathecal (into the spinal canal) is most commonly used for spinal anaesthesia and chemotherapy.
  • Intrauterine.
  • Intravaginal administration, in the vagina.
  • Intravenous (into a vein), e.g. many drugs, total parenteral nutrition.
  • Intravesical infusion is into the urinary bladder.
  • Intravitreal, through the eye.
  • Subcutaneous (under the skin). This generally takes the form of subcutaneous injection, e.g. with insulin. Skin popping is a slang term that includes subcutaneous injection, and is usually used in association with recreational drugs. In addition to injection, it is also possible to slowly infuse fluids subcutaneously in the form of hypodermoclysis.
  • Transdermal (diffusion through the intact skin for systemic rather than topical distribution), e.g. transdermal patches such as fentanyl in pain therapy, nicotine patches for treatment of addiction and nitroglycerine for treatment of angina pectoris.
  • Perivascular administration (perivascular medical devices and perivascular drug delivery systems are conceived for local application around a blood vessel during open vascular surgery).
  • Transmucosal (diffusion through a mucous membrane), e.g. insufflation (snorting) of cocaine, sublingual, i.e. under the tongue, sublabial, i.e. between the lips and gingiva, nitroglycerine, vaginal suppositories.

Topical

The definition of the topical route of administration sometimes states that both the application location and the pharmacodynamic effect thereof is local.

In other cases, topical is defined as applied to a localised area of the body or to the surface of a body part regardless of the location of the effect. By this definition, topical administration also includes transdermal application, where the substance is administered onto the skin but is absorbed into the body to attain systemic distribution.

If defined strictly as having local effect, the topical route of administration can also include enteral administration of medications that are poorly absorbable by the gastrointestinal tract. One such medication is the antibiotic vancomycin, which cannot be absorbed in the gastrointestinal tract and is used orally only as a treatment for Clostridium difficile colitis.

Choice of Routes

The reason for choice of routes of drug administration are governing by various factors:

  • Physical and chemical properties of the drug. The physical properties are solid, liquid and gas. The chemical properties are solubility, stability, pH, irritancy etc.
  • Site of desired action: the action may be localised and approachable or generalised and not approachable.
  • Rate of extent of absorption of the drug from different routes.
  • Effect of digestive juices and the first pass metabolism of drugs.
  • Condition of the patient.

In acute situations, in emergency medicine and intensive care medicine, drugs are most often given intravenously. This is the most reliable route, as in acutely ill patients the absorption of substances from the tissues and from the digestive tract can often be unpredictable due to altered blood flow or bowel motility.

Convenience

Enteral routes are generally the most convenient for the patient, as no punctures or sterile procedures are necessary. Enteral medications are therefore often preferred in the treatment of chronic disease. However, some drugs can not be used enterally because their absorption in the digestive tract is low or unpredictable. Transdermal administration is a comfortable alternative; there are, however, only a few drug preparations that are suitable for transdermal administration.

Desired Target Effect

Identical drugs can produce different results depending on the route of administration. For example, some drugs are not significantly absorbed into the bloodstream from the gastrointestinal tract and their action after enteral administration is therefore different from that after parenteral administration. This can be illustrated by the action of naloxone (Narcan), an antagonist of opiates such as morphine. Naloxone counteracts opiate action in the central nervous system when given intravenously and is therefore used in the treatment of opiate overdose. The same drug, when swallowed, acts exclusively on the bowels; it is here used to treat constipation under opiate pain therapy and does not affect the pain-reducing effect of the opiate.

Oral

The oral route is generally the most convenient and costs the least. However, some drugs can cause gastrointestinal tract irritation. For drugs that come in delayed release or time-release formulations, breaking the tablets or capsules can lead to more rapid delivery of the drug than intended. The oral route is limited to formulations containing small molecules only while biopharmaceuticals (usually proteins) would be digested in the stomach and thereby become ineffective. Biopharmaceuticals have to be given by injection or infusion. However, recent research (2018) found an organic ionic liquid suitable for oral insulin delivery (a biopharmaceutical) into the blood stream.

Oral administration is often denoted “PO” from “per os”, the Latin for “by mouth”.

The bioavailability of oral administration is affected by the amount of drug that is absorbed across the intestinal epithelium and first-pass metabolism.

Local

By delivering drugs almost directly to the site of action, the risk of systemic side effects is reduced.

Skin absorption (dermal absorption), for example, is to directly deliver drug to the skin and, hopefully, to the systemic circulation. However, skin irritation may result, and for some forms such as creams or lotions, the dosage is difficult to control. Upon contact with the skin, the drug penetrates into the dead stratum corneum and can afterwards reach the viable epidermis, the dermis, and the blood vessels.

Mouth Inhalation

Inhaled medications can be absorbed quickly and act both locally and systemically. Proper technique with inhaler devices is necessary to achieve the correct dose. Some medications can have an unpleasant taste or irritate the mouth.

In general, only 20-50% of the pulmonary-delivered dose rendered in powdery particles will be deposited in the lung upon mouth inhalation. The remainder of 50-70% undeposited aerosolised particles are cleared out of lung as soon as exhalation.

An inhaled powdery particle that is >8 μm is structurally predisposed to depositing in the central and conducting airways (conducting zone) by inertial impaction.

An inhaled powdery particle that is between 3 and 8 μm in diameter tend to largely deposit in the transitional zones of the lung by sedimentation.

An inhaled powdery particle that is ❤ μm in diameter is structurally predisposed to depositing primarily in the respiratory regions of the peripheral lung via diffusion.

Particles that deposit in the upper and central airways are generally absorbed systemically to great extent because they are only partially removed by mucociliary clearance, which results in orally mediated absorption when the transported mucous is swallowed, and first pass metabolism or incomplete absorption through loss at the faecal route can sometimes reduce the bioavailability. This should in no way suggest to clinicians or researchers that inhaled particles are not a greater threat than swallowed particles, it merely signifies that a combination of both methods may occur with some particles, no matter the size of or lipo/hydrophilicity of the different particle surfaces.

Nasal Inhalation

Inhalation by nose of a substance is almost identical to oral inhalation, except that some of the drug is absorbed intranasally instead of in the oral cavity before entering the airways. Both methods can result in varying levels of the substance to be deposited in their respective initial cavities, and the level of mucous in either of these cavities will reflect the amount of substance swallowed. The rate of inhalation will usually determine the amount of the substance which enters the lungs. Faster inhalation results in more rapid absorption because more substance finds the lungs. Substances in a form that resists absorption in the lung will likely resist absorption in the nasal passage, and the oral cavity, and are often even more resistant to absorption after they fail absorption in the former cavities and are swallowed.

Parenteral

The term parenteral is from para-1 ‘beside’ + Greek enteron ‘intestine’ + -al. This name is due to the fact that it encompasses a route of administration that is not intestinal. However, in common English the term has mostly been used to describe the 4 most well-known routes of injection.

The term injection encompasses intravenous (IV), intramuscular (IM), subcutaneous (SC) and intradermal (ID) administration.

Parenteral administration generally acts more rapidly than topical or enteral administration, with onset of action often occurring in 15-30 seconds for IV, 10-20 minutes for IM and 15-30 minutes for SC. They also have essentially 100% bioavailability and can be used for drugs that are poorly absorbed or ineffective when they are given orally. Some medications, such as certain antipsychotics, can be administered as long-acting intramuscular injections. The practice is often carried out through physical force in company of law-enforcement, and often against the will of the patient. However, all doses of long-acting antipsychotics injections are of at extreme risk to the health and well-being of the patient. Extreme ethical concerns should be considered. If the choice is made to use force, care should be taken to use only the smallest dose that is currently scientifically demonstrated to be efficacious for the specific drug. This is because, despite being injected, the drugs are designed with heavy esterifying molecular additions which can cause traces of the drugs to be found in circulation for up to one year. Ongoing IV infusions can be used to deliver continuous medication or fluids.

Disadvantages of injections include potential pain or discomfort for the patient and the requirement of trained staff using aseptic techniques for administration. However, in some cases, patients are taught to self-inject, such as SC injection of insulin in patients with insulin-dependent diabetes mellitus. As the drug is delivered to the site of action extremely rapidly with IV injection, there is a risk of overdose if the dose has been calculated incorrectly, and there is an increased risk of side effects if the drug is administered too rapidly.

Intranasal

Drug administration via the nasal cavity yields rapid drug absorption and therapeutic effects. This is because drug absorption through the nasal passages doesn’t go through the gut before entering capillaries situated at tissue cells and then systemic circulation and such absorption route allows transport of drugs into the central nervous system via the pathways of olfactory and trigeminal nerve.

Intranasal absorption features low lipophilicity, enzymatic degradation within the nasal cavity, large molecular size, and rapid mucociliary clearance from the nasal passages, which explains the low risk of systemic exposure of the administered drug absorbed via intranasal.

Sublingual

Sublingual administration is fulfilled by placing the drug between the tongue and the lower surface of the mouth. The sublingual mucosa is highly permeable and thereby provides access to the underlying expansive network composed of capillaries, leading to rapid drug absorption.

Buccal

Buccally administered medication is achieved by placing the drug between gums and the inner lining of the cheek. In comparison with sublingual tissue, buccal tissue is less permeable resulting in slower absorption.

Research

Neural drug delivery is the next step beyond the basic addition of growth factors to nerve guidance conduits. Drug delivery systems allow the rate of growth factor release to be regulated over time, which is critical for creating an environment more closely representative of in vivo development environments.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Route_of_administration >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is a Pharmacist?

Introduction

Pharmacists, also known as chemists (Commonwealth English) or druggists (North American and, archaically, Commonwealth English), are health professionals who deal with the preparation, properties, effects and proper use of medicines. Pharmacists provide pharmaceutical care to patients and promote public health by serving as health advisors and care providers in the community. Pharmacists undergo university or graduate-level education to understand the biochemical mechanisms and actions of drugs, drug uses, therapeutic roles, side effects, potential drug interactions, and monitoring parameters. This is mated to anatomy, physiology, and pathophysiology. Pharmacists interpret and communicate this specialised knowledge to patients, physicians, and other health care providers.

Among other licensing requirements, different countries require pharmacists to hold either a Bachelor of Pharmacy, Master of Pharmacy, or Doctor of Pharmacy degree.

The most common pharmacist positions are that of a community pharmacist (also referred to as a retail pharmacist, first-line pharmacist or dispensing chemist), or a hospital pharmacist, where they instruct and counsel on the proper use and adverse effects of medically prescribed drugs and medicines. In most countries, the profession is subject to professional regulation. Depending on the legal scope of practice, pharmacists may contribute to prescribing (also referred to as “pharmacist prescriber”) and administering certain medications (e.g., immunisations) in some jurisdictions. Pharmacists may also practice in a variety of other settings, including industry, wholesaling, research, academia, formulary management, military, and government.

Nature of Work

Historically, the fundamental role of pharmacists as a healthcare practitioner was to check and distribute drugs to doctors for medication that had been prescribed to patients. In more modern times, pharmacists advise patients and health care providers on the selection, dosages, interactions, and side effects of medications, and act as a learned intermediary between a prescriber and a patient. Pharmacists monitor the health and progress of patients to ensure the safe and effective use of medication. Pharmacists may practice compounding; however, many medicines are now produced by pharmaceutical companies in a standard dosage and drug delivery form. In some jurisdictions, pharmacists have prescriptive authority to either independently prescribe under their own authority or in collaboration with a primary care physician through an agreed upon protocol called a collaborative practice agreement.

Increased numbers of drug therapies, aging but more knowledgeable and demanding populations, and deficiencies in other areas of the health care system seem to be driving increased demand for the clinical counselling skills of the pharmacist. One of the most important roles that pharmacists are currently taking on is one of pharmaceutical care. Pharmaceutical care involves taking direct responsibility for patients and their disease states, medications, and management of each to improve outcomes. Pharmaceutical care has many benefits that may include but are not limited to: decreased medication errors; increased patient compliance in medication regimen; better chronic disease state management, including hypertension and other cardiovascular disease risk factors; strong pharmacist–patient relationship; and decreased long-term costs of medical care.

Pharmacists are often the first point-of-contact for patients with health inquiries. Thus pharmacists have a significant role in assessing medication management in patients, and in referring patients to physicians. These roles may include, but are not limited to:

  • Clinical medication management, including reviewing and monitoring of medication regimens.
  • Assessment of patients with undiagnosed or diagnosed conditions, and ascertaining clinical medication management needs.
  • Specialised monitoring of disease states, such as dosing drugs in kidney and liver failure
  • Compounding medicines.
  • Providing pharmaceutical information.
  • Providing patients with health monitoring and advice, including advice and treatment of common ailments and disease states.
  • Supervising pharmacy technicians and other staff.
  • Oversight of dispensing medicines on prescription.
  • Provision of and counselling about non-prescription or over-the-counter drugs.
  • Education and counselling for patients and other health care providers on optimal use of medicines (e.g., proper use, avoidance of overmedication).
  • Referrals to other health professionals if necessary.
  • Pharmacokinetic evaluation.
  • Promoting public health by administering immunisations.
  • Constructing drug formularies.
  • Designing clinical trials for drug development.
  • Working with federal, state, or local regulatory agencies to develop safe drug policies.
  • Ensuring correctness of all medication labels including auxiliary labels.
  • Member of inter-professional care team for critical care patients.
  • Symptom assessment leading to medication provision and lifestyle advice for community-based health concerns (e.g. head colds, or smoking cessation).
  • Staged dosing supply (e.g. opioid substitution therapy).

Education and Credentialing

The role of pharmacy education, pharmacist licensing, and continuing education vary from country to country and between regions/localities within countries. In most countries, pharmacists must obtain a university degree at a pharmacy school or related institution, and/or satisfy other national/local credentialing requirements. In many contexts, students must first complete pre-professional (undergraduate) coursework, followed by about four years of professional academic studies to obtain a degree in pharmacy (such as Doctorate of Pharmacy). In the European Union (EU), pharmacists are required to hold a Masters of Pharmacy, which allows them to practice in any other EU country, pending professional examinations and language tests in the country in which they want to practice. Pharmacists are educated in pharmacology, pharmacognosy, chemistry, organic chemistry, biochemistry, pharmaceutical chemistry, microbiology, pharmacy practice (including drug interactions, medicine monitoring, medication management), pharmaceutics, pharmacy law, pathophysiology, physiology, anatomy, pharmacokinetics, pharmacodynamics, drug delivery, pharmaceutical care, nephrology, hepatology, and compounding of medications. Additional curriculum may cover diagnosis with emphasis on laboratory tests, disease state management, therapeutics and prescribing (selecting the most appropriate medication for a given patient).

Upon graduation, pharmacists are licensed, either nationally or regionally, to dispense medication of various types in the areas they have trained for.

Some may undergo further specialized training, such as in cardiology or oncology. Specialties include:[citation needed]

  • Academic pharmacist.
  • Clinical pharmacy specialist.
  • Community pharmacist.
  • Compounding pharmacist.
  • Consultant pharmacist.
  • Drug information pharmacist.
  • Home health pharmacist.
  • Hospital pharmacist.
  • Industrial pharmacist.
  • Informatics pharmacist.
  • Managed care pharmacist.
  • Military pharmacist.
  • Nuclear pharmacist.
  • Oncology pharmacist.
  • Regulatory-affairs pharmacist.
  • Veterinary pharmacist.
  • Pharmacist clinical pathologist.
  • Pharmacist clinical toxicologist.

Training and Practice by Country

Armenia

The Ministry of Education and Ministry of Health oversee pharmacy school accreditation in Armenia. Pharmacists are expected to have competency in the WHO Model List of Essential Medicines (EML), the use of Standard Treatment Guidelines, drug information, clinical pharmacy, and medicine supply management. There are currently no laws requiring pharmacists to be registered, but all pharmacies must have a license to conduct business. According to a World Health Organisation (WHO) report from 2010, there are 0.53 licensed pharmacists and 7.82 licensed pharmacies per 10,000 people in Armenia. Pharmacists are able to substitute for generic equivalents at point of dispensing.

Australia

The Australian Pharmacy Council is the independent accreditation agency for Australian pharmacists. The accreditation standards for Australian pharmacy degrees include compulsory clinical placements. with an emphasis on encouraging rural experiences to develop a rural workforce. It conducts examinations on behalf of the Pharmacy Board of Australia towards eligibility for registration. The Australian College of Pharmacy provides continuing education programmes for pharmacists. The number of full-time equivalent pharmacists working in Australia over the past decade has remained stable. Pharmacy practice is described by the practice standards and guidelines including those from the Pharmaceutical Society of Australia.

Wages for pharmacists in Australia appear to have stagnated, and even gone backwards. As of 2007, the award wages for a pharmacist is $812 a week. Pharmacist graduates are the lowest paid university graduates most years. Most pharmacists do earn above the award wage; the average male pharmacist earns $65,000, a female pharmacist averages $56,500. There are more graduates expected in the next few years making it even harder to get a job. Job security and increase in wages with regards to CPI could be unlikely. This is due to the large numbers of pharmacy graduates in recent years, and government desire to lower PBS costs. Contract and casual work is becoming more common. A contract pharmacist is self-employed and often called a locum; these pharmacists may be hired for one shift or for a longer period of time. There are accounts of underemployment and unemployment emerging recently.

Canada

The Canadian Pharmacists Association (CPhA) is the national professional organization for pharmacists in Canada. Specific requirements for practice vary across provinces, but generally include a bachelor’s (BSc Pharm) or Doctor of Pharmacy (PharmD) degree from one of 10 Canadian universities offering a pharmacy program, successful completion of a national board examination through the Pharmacy Examining Board of Canada (PEBC) (Quebec being the exception), practical experience through an apprenticeship/internship program, and fluency in French or English. International pharmacy graduates can begin their journey of becoming licensed to practice in Canada by enrolling with the National Association of Pharmacy Regulatory Authorities (NAPRA) Pharmacists’ Gateway Canada. The vast majority (~70%) of Canada’s licensed pharmacists work in community pharmacies, another 15% work in hospital, and the remainder work in other settings such as industry, government, or universities. Pharmacists’ scope of practice varies widely among the 13 provinces and territories and continues to evolve with time. As a result of pharmacists’ expanding scope and knowledge application, there has been a purposeful effort to transition the professional programmes in Canadian pharmacy schools to offer doctors of pharmacy over baccalaureate curriculums to ensure graduates have the most up to date level of training to match the increasing practice requirements.

Germany

In Germany, the education and training is divided into three sections, each ending with a state examination:

  • University: Basic studies (at least four semesters).
  • University: Main studies (at least four semesters).
  • Community Pharmacy / Hospital Pharmacy / Industry: Practical training (12 months; 6 months in a Community Pharmacy).

After the third state examination a person must become licensed as an RPh (“registered pharmacist”) for a licence to practice pharmacy. Today, many pharmacists work as employees in public pharmacies. They will be paid according to the labour agreement of Adexa and employer associations.

Japan

Historical

In ancient Japan, the men who fulfilled roles similar to pharmacists were respected. The place of pharmacists in society was settled in the Taihō Code (701) and re-stated in the Yōrō Code (718). Ranked positions in the pre-Heian Imperial court were established; and this organizational structure remained largely intact until the Meiji Restoration (1868). In this highly stable hierarchy, the pharmacists – and even pharmacist assistants – were assigned status superior to all others in health-related fields such as physicians and acupuncturists. In the Imperial household, the pharmacist was even ranked above the two personal physicians of the Emperor.

Contemporary

As of 1997, 46 universities of pharmacy in Japan graduated about 8000 students annually. Contemporary practice of clinical pharmacists in Japan (as evaluated in September 2000) focuses on dispensing of drugs, consultation with patients, supplying drug information, advising on prescription changes and amending prescriptions. These practices have been linked to decreases in the average number of drugs in prescriptions, drug costs and incidence of adverse drug events.

Nigeria

Training to become a registered pharmacist in Nigeria involves a five-year course after six years of secondary/high school or four years after eight years of secondary/high school (i.e. after 2 years of Advanced-level studies in accredited Universities). The degree awarded by most pharmacy schools is a Bachelor of Pharmacy Degree (B.Pharm.) However, in the near future, all schools will offer a 6-year first Degree course leading to the award of a Pharm.D (Doctor of Pharmacy Degree). The University of Benin has started the Pharm.D programme with other pharmacy schools planning to start soon. The Pharmacy Degree in Nigeria is unclassified i.e. awarded without first class, second class upper, etc., however graduates could be awarded Pass with Distinctions in specific fields such as Pharmaceutics, Pharmacology, medicinal chemistry etc. Pharmacy Graduates are required to undergo 1 year of Tutelage under the supervision of an already Registered Pharmacist(a preceptor) in a recognised and designated Institution before they can become Registered Pharmacists. The Profession is Regulated by a Government Statutory body called the Pharmacists Council of Nigeria. The West African Post Graduate College of Pharmacy runs post-registration courses on advanced-level practice in various fields of pharmacy. It is a college jointly funded by a number of Countries in the West Africa sub-region. There are thousands of Nigerian-trained pharmacists registered and practicing in countries such as the US, the UK, Canada etc., due to the relatively poor public sector salaries in Nigeria

Pakistan

In Pakistan, the Pharm.D. (Doctor of Pharmacy) degree is a graduate-level professional doctorate degree. Twenty-one universities are registered with the Pharmacy Council of Pakistan for imparting Pharmacy courses. In 2004 the Higher Education Commission of Pakistan and the Pharmacy Council of Pakistan revised the syllabus and changed the 4-year B.Pharmacy (Bachelor of Pharmacy) Program to a 5-year Pharm.D. (Doctor of Pharmacy) programme. All 21 universities have started the 5-year Pharm.D Programme. In 2011 the Pharmacy Council of Pakistan approved the awarding of a Doctor of Pharmacy degree, a five-year programme at the Department of Pharmacy, University of Peshawar.

Poland

Polish pharmacists have to complete a 5+1⁄2-year Master of Pharmacy Programme at medical university and obtain the right to practice as a pharmacist in Poland from District Pharmaceutical Council. The Programme includes 6 months of pharmacy training. The Polish name for the Master of Pharmacy Degree (M.Pharm.) is magister farmacji (mgr farm). Not only pharmacists, but also pharmaceutical technicians are allowed to dispense prescription medicines, except for narcotics, psychotropics and very potent medicines. Pharmacists approve prescriptions fulfilled by pharmaceutical technicians subsequently. Pharmaceutical technicians have to complete 2 years of post-secondary occupational school and 2 years of pharmacy training afterwards. Pharmacists are eligible to prescribe medicines in exceptional circumstances. All Polish pharmacies are obliged to produce compound medicines. Most pharmacists in Poland are pharmacy managers and are responsible for pharmacy marketing in addition to traditional activities. To become a pharmacy manager in Poland, a pharmacist is expected to have at least 5 years of professional experience. All pharmacists in Poland have to maintain an adequate knowledge level by participating in various university- and industry-based courses and arrangements or by undergoing postgraduate specialisation.

Sweden

In Sweden, the national board of health and welfare regulates the practice of all legislated health care professionals, and is also responsible for registration of pharmacists in the country. The education to become a licensed pharmacist is regulated by the European Union, and states that minimum educational requirements are five years of university studies in a pharmacy programme, of which six months must be a pharmacy internship. To be admitted to pharmacy studies, students must complete a minimum of three years of gymnasium, similar to high school (school for about 15–20-year-old students) programme in natural science after elementary school (6-16-year-olds). Only three universities in the whole of Sweden offer a pharmacy education, Uppsala University, where the Faculty of Pharmacy is located, the University of Gothenburg, and Umeå University. In Sweden, pharmacists are called Apotekare. At pharmacies in Sweden, pharmacists work together with another class of legislated health care professionals called Receptarier, in English so-called prescriptionists, who have completed studies equal to a Bachelor of Science in pharmacy, i.e., three years of university. Prescriptionists also have dispensing rights in Sweden, Norway, Finland and Iceland. The majority of the staff in a pharmacy are Apotekstekniker or “pharmacy technicians” with a three -semester education at a vocational college. Pharmacy technicians do not have dispensing rights in Sweden but are allowed to advise on and sell over-the-counter medicines.

Switzerland

In Switzerland, the federal office of public health regulates pharmacy practice. Four Swiss universities offer a major in pharmaceutical studies, the University of Basel, the University of Geneva, the University of Lausanne and the ETH Zurich. To major in pharmaceutical studies takes at least five years. Students spend their last year as interns in a pharmacy combined with courses at the university, with focus on the validation of prescriptions and the manufacturing of pharmaceutical formulations. Since all public health professions are regulated by the government it is also necessary to acquire a federal diploma in order to work in a pharmacy. It is not unusual for pharmaceutical studies majors to work in other fields such as the pharmaceutical industry or in hospitals. Pharmacists work alongside pharma assistants, an apprenticeship that takes three years to complete. Pharmacists can further specialise in various fields; this is organised by PharmaSuisse, the pharmacists’ association of Switzerland.

Tanzania

In Tanzania, pharmacy practice is regulated by the national Pharmacy Board, which is also responsible for registration of pharmacists in the country. By international standards, the density of pharmacists is very low, with a mean of 0.18 per 10,000 population. The majority of pharmacists are found in urban areas, with some underserved regions having only 2 pharmacists per region. According to 2007-2009 data, the largest group of pharmacists was employed in the public sector (44%). Those working in private retail pharmacies were 23%, and the rest were mostly working for private wholesalers, pharmaceutical manufacturers, in academia/teaching, or with faith-based or non-governmental facilities. The salaries of pharmacists varied significantly depending on the place of work. Those who worked in the academia were the highest paid followed by those who worked in the multilateral non-governmental organisations. The public sector including public retail pharmacies and faith based organisations paid much less. The Ministry of Health salary scale for medical doctors was considerably higher than that of pharmacists despite having a difference of only one year of training

Trinidad and Tobago

In Trinidad and Tobago, pharmacy practice is regulated by the Pharmacy Board of Trinidad and Tobago, which is responsible for the registration of pharmacists in the twin islands. The University of the West Indies in St. Augustine offers a 4-year Bachelor of Science in Pharmacy as the sole practicing degree of pharmacy. Graduates undertake a 6-month internship, known as pre-registration, under the supervision of a registered pharmacist, at a pharmacy of their choosing, whether community or institutional. After completion of the required pre-registration period, the graduate can then apply to the Pharmacy Board to become a registered pharmacist. After working 1 calendar year as a registered pharmacist, the individual can become a registered, responsible pharmacist. Being a registered, responsible pharmacist allows the individual to license a pharmacy and be a pharmacist-in-charge.

United Kingdom

In British English (and to some extent Australian English), the professional title known as “pharmacist” is also known as “dispensing chemist” or, more commonly, “chemist”. A dispensing chemist usually operates from a pharmacy or chemist’s shop, and is allowed to fulfil medical prescriptions and sell over-the-counter drugs and other health-related goods. Pharmacists can undertake additional training to allow them to prescribe medicines for specific conditions.

Practices

In the United Kingdom, most pharmacists working in the National Health Service practice in hospital pharmacy or community pharmacy. The Royal Commission on the National Health Service in 1979 reported that there were nearly 3,000 pharmacists employed in the hospital and community health service in the UK at that time. They were enthusiastic about the idea that pharmacists might develop their role of giving advice to the public.

The new professional role for pharmacist as prescriber has been recognized in the UK since May 2006, called the “Pharmacist Independent Prescriber”. Once qualified, a pharmacist independent prescriber can prescribe any licensed medicine for any medical condition within their competence. This includes controlled drugs except schedule 1 and prescribing certain drugs for the treatment of addiction (cocaine, diamorphine and dipipanone).

Education and Registration

Pharmacists, pharmacy technicians and pharmacy premises in the United Kingdom are regulated by the General Pharmaceutical Council (GPhC) for England, Scotland and Wales and by the Pharmaceutical Society of Northern Ireland for Northern Ireland. The role of regulatory and professional body on the mainland was previously carried out by the Royal Pharmaceutical Society of Great Britain, which remained as a professional body after handing over the regulatory role to the GPhC in 2010.

The following criteria must be met for qualification as a pharmacist in the United Kingdom (the Northern Irish body and the GPhC operate separately but have broadly similar registration requirements):

  • Successful completion of a 4-year Master of Pharmacy degree at a GPhC accredited university. Pharmacists holding degrees in Pharmacy from overseas institutions are able to fulfil this stage by undertaking the Overseas Pharmacist Assessment Programme (OSPAP), which is a one-year postgraduate diploma. On completion of the OSPAP, the candidate would proceed with the other stages of the registration process in the same manner as a UK student.
  • Completion of a 52-week preregistration training period. This is a period of paid or unpaid employment, in an approved hospital or community pharmacy under the supervision of a pharmacist tutor. During this time the student must collect evidence of having met certain competency standards set by the GPhC.
  • A pass mark in the GPhC registration assessment (formally an exam). This includes a closed-book paper and an open-book/mental calculations paper (using the British National Formulary and the GPhC’s “Standards of Conduct, Ethics and Performance” document as reference sources). The student must achieve an overall mark of 70%, which must include at least 70% in the calculations section of the open-book paper. From June 2016, the assessment will involve two papers, as before but the use of a calculator will now be allowed. However, reference sources will no longer be allowed in the assessment. Instead, relevant extracts of the British National Formulary will be provided within the assessment paper.
  • Satisfactorily meeting the GPhC’s Fitness to Practice Standards.

United States

In 2014 the United States Bureau of Labour Statistics revealed that there were 297,100 American pharmacist jobs. By 2024 that number is projected to grow by 3%. The majority (65%) of those pharmacists work in retail settings, mostly as salaried employees but some as self-employed owners. About 22% work in hospitals, and the rest mainly in mail-order or Internet pharmacies, pharmaceutical wholesalers, practices of physicians, and the Federal Government.

All graduating pharmacists must now obtain the Doctor of Pharmacy (Pharm.D.) degree before they are eligible to sit for the North American Pharmacist Licensure Examination (NAPLEX) to enter into pharmacy practice. In addition, pharmacists are subject to state-level jurisprudence exams in order to practice from state to state.

Pharmacy School Accreditation

The Accreditation Council for Pharmacy Education (ACPE) has operated since 1932 as the accrediting body for schools of pharmacy in the United States. The mission of ACPE is “To assure and advance excellence in education for the profession of pharmacy”. ACPE is recognised for the accreditation of professional degree programs by the United States Department of Education (USDE) and the Council for Higher Education Accreditation (CHEA). Since 1975, ACPE has also been the accrediting body for continuing pharmacy education. The ACPE board of directors are appointed by the American Association of Colleges of Pharmacy (AACP), the American Pharmacists Association (APhA), the National Association of Boards of Pharmacy (NABP) (three appointments each), and the American Council on Education (one appointment). To obtain licensure in the United States, applicants for the North American Pharmacist Licensure Examination (NAPLEX) must graduate from an ACPE accredited school of pharmacy. ACPE publishes standards that schools of pharmacy must comply with to gain accreditation.

A Pharmacy school pursuing accreditation must first apply and be granted Pre-candidate status. These schools have met all the requirements for accreditation, but have not yet enrolled any students. This status indicates that the school of pharmacy has developed its programme in accordance with the ACPE standards and guidelines. Once a school has enrolled students, but has not yet had a graduating class, they may be granted Candidate status. The expectations of a Candidate programme are that they continue to mature in accordance with stated plans. The graduates of a Candidate program are the same as those of fully accredited programmes. Full accreditation is granted to a programme once they have demonstrated they comply with the standards set forth by ACPE.

The customary review cycle for established accredited programmes is six years, whereas for programmes achieving their initial accreditation this cycle is two years. These are comprehensive on-site evaluations of the programmes. Additional evaluations may be conducted at the discretion of ACPE in the interim between comprehensive evaluations.

Education

Acceptance into a doctorate of pharmacy program depends upon completing specific prerequisites or obtaining a transferable bachelor’s degree. Pharmacy school is four years of graduate school (accelerated Pharmacy Schools go January to January and are only 3 years), which include at least one year of practical experience. Graduates receive a Doctorate of Pharmacy (PharmD) upon graduation. Most schools require students to take a Pharmacy College Admissions Test PCAT and complete 90 credit hours of university coursework in the sciences, mathematics, composition, and humanities before entry into the PharmD programme. Due to the large admittance requirements and highly competitive nature of the field, most pharmacy students complete a bachelor’s degree before entry to pharmacy school.

Possible prerequisites:

  • Anatomy.
  • Physiology.
  • Biochemistry.
  • Biology.
  • Immunology.
  • Chemical engineering.
  • Economics.
  • Pathophysiology.
  • Physics.
  • Humanities.
  • Microbiology.
  • Molecular biology.
  • Organic chemistry.
  • Physical chemistry.
  • Statistics.
  • Calculus.

Besides taking classes, additional requirements before graduating may include a certain number of hours for community service, e.g., working in hospitals, clinics, and retail.

Estimated timeline: 4 years undergraduate + 4 years doctorate + 1–2 years residency + 1–3 years fellowship = 8-13 years.

A doctorate of pharmacy (except non-traditional, i.e. transferring a license from another country) is the only degree accepted by the National Associate of Boards of Pharmacy NABP to be eligible to “sit” for the North American Pharmacist Licensure Examination (NAPLEX). Previously the United States had a 5-year bachelor’s degree in pharmacy. For BS Pharmacy graduates currently licensed in US, there are 10 Universities offering non-traditional doctorate degree programmes via part-time, weekend or on-line programmes. These are programmes fully accredited by Accreditation Council for Pharmacy Education (ACPE) but only available to current BS Pharmacy graduates with a license to practice pharmacy. Some institutions still offer 6 year accelerated PharmD programmes.

The current Pharm.D. degree curriculum is considerably different from that of the prior BS in pharmacy. It now includes extensive didactic clinical preparation, a full year of hands-on practice experience in a wider array of healthcare settings, and a greater emphasis on clinical pharmacy practice pertaining to pharmacotherapy optimisation. Legal requirements in the US to becoming a pharmacist include: graduating from an accredited PharmD programme, conducting a specified number of internship hours under a licensed pharmacist (i.e. 1800 hours in some states), passing the NAPLEX, and passing a Multi-state Pharmacy Jurisprudence Exam MPJE. Arkansas, California, and Virginia have their own exams instead of the MPJE; in those states, pharmacists must pass the Arkansas Jurisprudence Exam, the California Jurisprudence Exam, or the Virginia Pharmacy Law Exam.

Residency is an option for post-graduates that is typically 1-2 years in length. A residency gives licensed pharmacists decades of clinical experience in an extremely condensed timeframe of only a few short years. In order for new graduates to remain competitive, employers generally favour residency trained applicants for clinical positions. The profession is moving toward resident-trained pharmacists who wish to provide direct patient care clinical services. In 1990, the American Association of Colleges of Pharmacy (AACP) required the new professional degree. Graduates from a PharmD program may also elect to do a fellowship that is geared toward research. Fellowships can varying in length but last 1-3 years depending on the programme and usually require 1 year of residency at minimum.

Specialisation and Credentialing

American pharmacists can become certified in recognised specialty practice areas by passing an examination administered by one of several credentialing boards.

  • The Board of Pharmacy Specialties certifies pharmacists in thirteen specialties:
    • Ambulatory care pharmacy.
    • Cardiology pharmacy.
    • Compounded sterile preparations pharmacy.
    • Critical care pharmacy.
    • Geriatric pharmacy.
    • Infectious diseases pharmacy.
    • Nuclear pharmacy.
    • Nutrition support pharmacy.
    • Oncology pharmacy.
    • Paediatric pharmacy.
    • Pharmacotherapy.
    • Psychiatric pharmacy.
    • Solid organ transplant pharmacy.
  • The American Board of Applied Toxicology certifies pharmacists and other medical professionals in applied toxicology.

Expanding Scope of Practice

Vaccinations

As of 2016, all 50 states and the District of Columbia permit pharmacists to provide vaccination services, but specific protocols vary between states.

California

All licensed California pharmacists can perform the following:

  • Order and interpret drug therapy related tests.
  • Furnish smoking cessation aids (such as nicotine replacement therapy).
  • Furnish oral self-administered contraception (birth control pills).
  • Furnish travel medications recommended by the CDC.
  • Administer vaccinations pursuant to the latest CDC standards for anyone ages 3+.

The passage of Assembly Bill 1535 (2014) authorises pharmacists in California to furnish naloxone without a physician’s prescription.

With the passage of Senate Bill 159 in 2019, pharmacists in California are authorized to furnish pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) to patients without a physician’s prescription. In order to be eligible to dispense, a pharmacists must first “complete a training programme approved by the” California State Board of Pharmacy.

California pharmacists can apply for Advanced Practice Pharmacist (APh) licenses from the California State Board of Pharmacy. Senate Bill 493, written by Senator Ed Hernandez, established a section on the Advanced Practice Pharmacist and outlines the definition, scope of practice, qualifications, and regulations of those holding this license. An APh can:

  • Perform patient assessments.
  • Refer patients to other healthcare providers.
  • Participate in the evaluation and management of diseases and health conditions in collaboration with other health care providers.
  • Initiate, adjust, or discontinue therapy pursuant to the regulations outlined in the bill.

To qualify for an advanced practice pharmacist license in California, the applicant must be in good standing with the State Board of pharmacy, have an active pharmacist license, and fulfil two of three requirements, including certification in their area clinical practice. The license must be renewed every 2 years, and the APh applying for renewal must complete 10 hours of continuing education in at least one area relevant to their clinical practice.

Vietnam

School students must take a national exam to enter a university of pharmacy or the pharmacy department of a university of medicine and pharmacy. About 5-7% of students can pass the exam. There are 3 aspects to the exam. These are on math, chemistry, and physics or biology. After being trained at the university for 5 years, successful students receive a bachelor’s degree in pharmacy. Or they are university pharmacists (university pharmacist to discriminate between college pharmacist or vocational pharmacist in some countries of the world these trainee pharmacists are called pharmacist assistants). An alternative method of obtaining a bachelor’s degree is as follows. School pupils study at a college of pharmacy or a vocational school of pharmacy. After attending the school or college they go to work in a pharmacy, and with two years of practice they could take an exam to enter university of pharmacy or the pharmacy department of a university of medicine and pharmacy. This exam is easier than the national one. Passing the exam they continue studying to gain 3-year bachelor’s degrees or 4-year bachelor’s degrees. This degree is considered equivalent to a 5-year bachelor’s degree.

This page is based on the copyrighted Wikipedia article < https://en.wikipedia.org/wiki/Pharmacist >; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.

What is Pharmacotherapy?

Introduction

Pharmacotherapy is therapy using pharmaceutical drugs, as distinguished from therapy using surgery (surgical therapy), radiation (radiation therapy), movement (physical therapy), or other modes. Among physicians, sometimes the term medical therapy refers specifically to pharmacotherapy as opposed to surgical or other therapy; for example, in oncology, medical oncology is thus distinguished from surgical oncology. Pharmacists are experts in pharmacotherapy and are responsible for ensuring the safe, appropriate, and economical use of pharmaceutical drugs.

Background

The skills required to function as a pharmacist require knowledge, training and experience in biomedical, pharmaceutical and clinical sciences. Pharmacology is the science that aims to continually improve pharmacotherapy. The pharmaceutical industry and academia use basic science, applied science, and translational science to create new pharmaceutical drugs.

As pharmacotherapy specialists and pharmacists have responsibility for direct patient care, often functioning as a member of a multidisciplinary team, and acting as the primary source of drug-related information for other healthcare professionals. A pharmacotherapy specialist is an individual who is specialised in administering and prescribing medication, and requires extensive academic knowledge in pharmacotherapy.

In the US, a pharmacist can gain Board Certification in the area of pharmacotherapy upon fulfilling eligibility requirements and passing a certification examination.

While pharmacists provide valuable information about medications for patients and healthcare professionals, they are not typically considered covered pharmacotherapy providers by insurance companies.

On This Day … 18 December

People (Births)

  • 1884 – Emil Starkenstein, Czech pharmacologist, co-founded clinical pharmacology (d. 1942).

People (Deaths)

  • 1990 – Joseph Zubin, Lithuanian-American psychologist and academic (b. 1900).

Emil Starkenstein

Emil Starkenstein (18 December 1884 to 06 November 1942) was a Czech-Jewish pharmacologist and one of the founders of clinical pharmacology. He was killed in the Mauthausen-Gusen concentration camp along with a few hundred refugees from Amsterdam after an incident in which a Dutch Jew resisted a Nazi patrol.

Emil Starkenstein was born in the Bohemian (now Czech) town of Poběžovice, (Ronsperg) to Jewish German parents. The family had many members who became local physician. Starkenstein researched and published a family tree in 1927 which traced his family roots as far back as 1350 and included such figures as R. Benjamin Wolf (1777-1851), R.Eleasar Löw, R. Moses Isserles (1520-1572), and several in the Katzenelbogen line, including R.Saul Wahl Katzenelbogen who, according to the glossary of the family tree, ‘became king of Poland for one night after the death of Stephen Bathory.

He was a professor at Charles University in Prague until the 1938 German occupation of Czechoslovakia. He continued his work as a refugee in the Netherlands. After the German invasion of the Netherlands in 1939, Starkenstein was confined to an area in Amsterdam with other Jews, where they were forced to wear yellow badges and banned from civil service employment. He was arrested and deported in 1941, via Prague and Terezin, to Mauthausen concentration camp. His wife and daughter survived in hiding in The Netherlands, and after the war his wife Marie (née Weil) donated his extensive collection of papers (more than 20,000 items) to the Czechoslovak state. In 2002, these papers were finally deposited in the archives of Charles University in Prague. In addition to the scientific papers, Starkenstein had one of the most impressive pharmacological libraries ever assembled. Before he was killed in the Nazi concentration camps, his family agreed to sell the collection to rare book dealer Ludwig Gottschalk, but when Gottschalk faced deportation to the camps himself, he secreted the library in several locations in the Black Forest and went into hiding. After the war, he reassembled the Starkenstein books and for nearly half a century sold items from the collection under the name Biblion, Inc., in Forest Hills, New York. A portion of the library was purchased by the LuEsther T. Mertz Library of the New York Botanical Garden. These 147 volumes, dealing primarily with the medicinal uses of plants, are identified by Starkenstein’s bookplate.

Joseph Zubin

Joseph Zubin (09 October 1900 to 18 December 1990) was a Lithuanian born American educational psychologist and an authority on schizophrenia who is commemorated by the Joseph Zubin Awards.

Life

Zubin was born 09 October 1900 in Raseiniai, Lithuania, but moved to the US in 1908 and grew up in Baltimore. His first degree was in chemistry at Johns Hopkins University in 1921, and he earned a PhD in educational psychology at Columbia University in 1932. In 1934 he married Winifred Anderson (who survived him) and they had three children (2 sons, David and Jonathan, and a daughter, Winfred). At his death on 18 December 1990, he had seven grandchildren. In addition, his great-grandson is Adam Chapnik (he/him/his), counsellor of the Abbey (he/him/his) Unit at Massachusetts Audubon Society’s Wildwood Camp.

Honours

Zubin was President of both the American Psychopathological Association (1951-1952) and the American College of Neuropsychopharmacology (1971-1972) and received numerous awards for his work.[2] In 1946 he was elected as a Fellow of the American Statistical Association.

Book: Combined Treatments for Mental Disorders

Book Title:

Combined Treatments for Mental Disorders: A Guide to Psychological and Pharmacological Interventions.

Author(s): Morgan T. Sammons and Norman B. Schmidt (editors).

Year: 2001.

Edition: First (1st).

Publisher: American Psychological Association.

Type(s): Hardcover.

Synopsis:

An exploration of the best way to integrate pharmaceuticals and pyschotherapy in the treatment of mental disorders. Combined treatment is relatively common, but because of biases in the fields of medicine and psychology that champion one form over another, many clinicians are not fully informed about use of both modalities. This practical volume seeks to end this situation.

As this text reveals, exclusive reliance on one mode of treatment may result in a practitioner being unable to address many clients’ needs. Each chapter closely examines the combined treatment for a different disorder, such as insomnia, depression, schizophrenia, and obsessive-compulsive disorder. Different disorders are addressed in separate chapters in relation to combined treatments which many clinicians may not be fully informed of. The social and ethical ramifications of prescriptive authority for pyschologists is also addressed in relation to its increasing relevance. A practical guide for clinicians both experienced and non-experienced in the psychological and pharmacological fields.

Book: Evidence-based Ayurveda: Defining a New Scientific Path

Book Title:

Evidence-based Ayurveda: Defining a New Scientific Path.

Author(s): C.P. Khare.

Year: 2019.

Edition: One.

Publisher: Routledge.

Type(s): Hardcover and Kindle.

Synopsis:

This groundbreaking work calls for the overhaul of traditional Ayurveda and its transformation into a progressive, evidence-based practice.

This book begins by looking back at the research of the last three centuries, Indian medicinal plants, and Ayurveda in a twenty-first-century context. The first part of this book explores the limitations of contemporary Ayurvedic pharmacognosy and pharmacology, discussing the challenges the practice faces from research and clinical trials. It makes a compelling argument for the necessity of change. The second part of the book defines and elaborates upon a new, scientific path, taking the reader from identification of the herb through all stages of drug development.

An essential tool for herbal drug development, this text is designed for knowledgeable students, practitioners, and scholars of Ayurveda, pharmacy, and herbal medicine.